基于概率无向图模型的近邻传播聚类算法
CSTR:
作者:
作者单位:

(广西大学计算机与电子信息学院,南宁530004)

作者简介:

覃华(1972-), 男, 教授, 从事量子计算理论、近似动态规划最优化方法、数据挖掘等研究;詹娟娟(1993-), 女, 硕士生, 从事数据挖掘的研究.

通讯作者:

E-mail: cherryzhan1993@163.com

中图分类号:

TP301.6

基金项目:

国家自然科学基金项目(61363027);教育部人文社会科学研究规划基金项目(11YJAZH080).


Affinity propagation clustering algorithm based on probabilistic undirected graphical model
Author:
Affiliation:

(College of Computer and Electronic Information,Guangxi University,Nanning 530004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对近邻传播聚类算法偏向参数难选定、生成的簇数目偏多等问题,提出一种概率无向图模型的近邻传播聚类算法.首先为样本数据构建概率无向图模型,利用极大团和势函数计算无向图中数据样本的概率密度,将此概率密度作为一种聚类先验知识注入近邻传播算法的偏向参数中,提高算法的聚类效率;并用高斯降噪和簇归并方法进一步提升算法的聚类精度.在UCI数据集上的实验结果表明,所提出算法的聚类效率和精度均优于相比较的同类算法.

    Abstract:

    In order to solve the problem that the preference of the traditional affinity propagation clustering algorithm is difficult to choose and the number of generate clusters is likely to be overmuch, an affinity propagation clustering method based on the probabilistic undirected graph model is proposed in this paper. Firstly, the probabilistic undirected graph model is constructed for sample data, while the probability density is calculated for each sample data by maximum clique and potential function. Then the probability density as a priori clustering knowledge is put into the preference of the affinity propagation algorithm to improve its efficiency. The clustering accuracy of the algorithm is further promoted by using the Gauss noise reduction and cluster merging method. Experimental results on the UCI data sets show better clustering efficiency and accuracy of the proposed algorithm against several other similar algorithms.

    参考文献
    相似文献
    引证文献
引用本文

覃华,詹娟娟,苏一丹.基于概率无向图模型的近邻传播聚类算法[J].控制与决策,2017,32(10):1796-1802

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-09-30
  • 出版日期:
文章二维码