基于Student's t分布的自适应重采样粒子滤波算法
CSTR:
作者:
作者单位:

(解放军电子工程学院战役系,合肥230037)

作者简介:

滕飞(1990-), 男, 博士生, 从事多目标跟踪、随机集理论及其应用的研究;薛磊(1962-), 男, 教授, 博士生导师, 从事逆合成孔径雷达、压制干扰和信息技术等研究.

通讯作者:

E-mail: tfmmt@foxmail.com

中图分类号:

TP242.6

基金项目:

武器装备预研重点基金项目(9140A33020112JB39085).


Self-adaptive resampling particle filter based on student's t distribution
Author:
Affiliation:

(Department of Battle,Electronic Engineering Institute of PLA,Hefei 230037,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对粒子滤波在跟踪非线性状态突变系统的隐状态时,因粒子贫化导致估计精度下降的问题,提出一种基于Student's t分布的自适应重采样粒子滤波算法.首先,将Student's t分布作为采样尺度转移方程,再自适应地将粒子依据权值大小分为两个子集;然后,对子集执行自适应交叉和变异操作,得到新生粒子集,从而自适应地提升粒子多样性,达到提升估计精度的目的.实验结果验证了所提出算法的可行性和有效性.

    Abstract:

    For the estimation accuracy problem that a particle filter used in hidden state tracking in nonlinear state mutation system suffers from particle impoverishment, a self-adaptive resampling particle filter based on student's t distribution is proposed.Firstly, the algorithm employs the student's t distribution as the transfer function of sampling scale. Then, the particle set is divided into two subsets according to the weight. Finally, self-adaptive crossover and mutation operations are performed on the two subsets to obtain the newborn sets. This algorithm can improve the estimation accuracy by self-adaptively improving the particle diversity. The simulation results show the feasibility and effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

滕飞,薛磊,李修和.基于Student's t分布的自适应重采样粒子滤波算法[J].控制与决策,2018,33(2):361-365

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-12-21
  • 出版日期:
文章二维码