WSNs中基于期望网络覆盖和分簇压缩感知的数据收集方案
CSTR:
作者:
作者单位:

(1. 西安航空学院 电子工程学院,西安 710077;2. 西北工业大学~计算机学院,西安 710072)

作者简介:

刘洲洲(1981-), 男, 副教授, 从事无线传感器网络的研究;李士宁(1967-), 男, 教授, 从事移动计算与传感网等研究.

通讯作者:

E-mail: nazi2005@126.com

中图分类号:

TP393

基金项目:

国家自然科学基金项目(61401499);陕西省自然科学基金面上项目(2017JM6096);西安市科技计划项目(2017076CG/RC039(XAHK001)).


Data collection scheme based on expected network coverage and cluster compressive sensing for WSNs
Author:
Affiliation:

(1. School of Electronic Engineering,Xián Aeronautical University,Xián 710077,China;2. School of Compuer Science,Northwestern Polytechnical University,Xián 710072,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高无线传感器网络数据收集精确度、降低网络能耗和改善数据包丢失情况下数据收集算法的鲁棒性,提出一种基于期望网络覆盖和分簇压缩感知的数据收集方案.首先设计期望网络覆盖优化算法,给出节点调度策略,实现对“特殊”区域重点观测和降低节点能耗的目的;然后通过分析网络分簇与节点部署之间的关系,设计弱相关性观测矩阵,降低数据包丢失对数据收集的影响;最后引入群居蜘蛛优化算法以提高汇聚节点处CS数据重构精度.仿真结果表明,与其他数据收集算法相比,所提出方案数据重构误差降低了约23.5{%

    Abstract:

    In order to improve the wireless sensor network(WSN) data collection accuracy, reduce the energy consumption of the network and improve the robustness of data collection algorithm under packet loss condition, a data collection scheme based on expected network coverage and cluster compressive sensing is proposed. The data collection scheme is divided into two steps as expected network coverage optimization and cluster CS (compressive sensing) data collection. Firstly, the expected network coverage optimization algorithm is designed, and the node scheduling strategy is given through the quantitative analysis of the node coverage redundancy and the expected value of network coverage in the key observation area, which helps to achieve the purpose of the ``special'' area observation and reduce energy consumption. Then, by analyzing the relationship between networks clustering and node deployment, the adaptive dynamic network clustering results are provided. On this basis, the weak correlation observation matrix is designed, which can reduce the influence of the packet loss on CS data collection. Finally, the social spider optimization algorithm is introduced to improve the reconstruction accuracy of the CS. The simulation results show that compared with other data collection algorithms, the data reconstruction error is reduced by about 23.5{%

    参考文献
    相似文献
    引证文献
引用本文

刘洲洲,李士宁. WSNs中基于期望网络覆盖和分簇压缩感知的数据收集方案[J].控制与决策,2018,33(3):422-430

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-03-06
  • 出版日期:
文章二维码