基于改进暗通道先验的交通图像去雾新方法
CSTR:
作者:
作者单位:

(1. 北京交通大学交通运输学院,北京100044;2. 中国冶金地质总局地球物理勘查院,河北保定071052)

作者简介:

王泽胜(1987-), 男, 博士生, 从事智能交通与计算机视觉的研究;董宝田(1956-), 男, 教授,从事智能交通与铁路信息化等研究.

通讯作者:

E-mail: btdong@bjtu.edu.cn

中图分类号:

TP298.2

基金项目:

国家863计划项目(2009 AA11Z207);高等学校博士学科点专项科研基金项目(20110009110011).


Improved dehazing method for traffic images based on dark channel prior
Author:
Affiliation:

(1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044,China;2. Geophisical Exploration Academy of China Metallurgical Geology Bureau, Baoding 071052,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对交通场景图像中由于雾霾导致的图像目标主体不清晰,影响监控效果的问题,提出一种基于导向滤波与自适应色阶调整的改进暗通道图像去雾新方法.首先,基于暗通道原理对原始图像进行映射处理,从而得到大气光成分与透射率的估计值,并利用多维导向滤波方法对大气透射率估计值进行优化处理;然后,根据图像降质过程的逆过程,求解雾霾图像清晰化处理初始结果;最后,利用多通道自适应色阶调整方法进一步优化初始结果,解决初始结果整体亮度较暗、不利于监控系统后期处理的问题.实验结果表明,清晰化处理后的图像具有较高的亮度和对比度值,较好地保留并增强了图像的边缘和细节信息,算法去雾霾效果显著,针对交通场景图像处理的自适应性较高.

    Abstract:

    The monitoring effect is influenced by haze which can make targets in images blurred. To resolve this problem, an improved image dehazing method based on dark channel prior by using the guided filter and adaptive color levels adjustment is proposed. Firstly, mapping operations are executed to estimate the atmospheric composition and transmissivity according to dark channel prior. The estimated value of transmissivity is optimized by using the multi-dimensional guided filter. Then, an initial dehazed result is generated according to the inverse process of image degradation. The light intensity of the initial result is usually low, which makes monitoring equipment hard to perform further actions. Thus multi-channel adaptive color levels adjustment is finally used to optimize the initial result. Experimental results show that the haze removal images have higher light intensity, contrast and better sharpness. The edge and detail features are enhanced significantly. The dehazing effect is remarkable, and the adaptability of the proposed method is high aiming at traffic images collected in hazy weather.

    参考文献
    相似文献
    引证文献
引用本文

王泽胜,董宝田,赵芳璨,等.基于改进暗通道先验的交通图像去雾新方法[J].控制与决策,2018,33(3):486-490

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-03-06
  • 出版日期:
文章二维码