基于属性层次模型的柴油机故障证据融合方法
CSTR:
作者:
作者单位:

(大连海事大学轮机工程学院,辽宁大连116026)

作者简介:

王承远(1983-), 男, 博士生, 从事智能控制、证据融合及决策的研究;徐久军(1967-), 男, 教授, 博士, 从事柴油机故障诊断等研究.

通讯作者:

E-mail: wwccyylove@163.com

中图分类号:

TP273

基金项目:

国家自然科学基金项目(51509029);辽宁省教育厅基金项目(L2015065).


Evidence-fusion method in fault diagnosis of diesel engine based on attribute hierarchical model
Author:
Affiliation:

(Marine Engineering College,Dalian Maritime University,Dalian116026,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对证据理论在覆盖率高的柴油机故障诊断中容易出现证据融合误差的问题,提出一种基于属性层次模型的证据融合方法.首先,通过余弦相似度改进目标层权重算法,得到反映目标层不同证据源差异的本质差异因子;然后,采用贝叶斯网络规则改进属性层权重算法,计算相关联的属性层证据源熵值权重;最后,通过故障层次关联特性和CWAA算子修正证据理论融合规则,将不同层次属性权重有效融合,减少系统复杂性引起的诊断误差.在R6105AZLD柴油机台架上的实验结果表明,引入所提方法后的诊断准确度和鲁棒性大幅提高.

    Abstract:

    According to the problem of the evidence fusion error occurred frequently by the evidence theory of diesel engine fault with the coverage of high diagnosis, a evidence-fusion method based on attribute hierarchical model is proposed. Firstly, the essential difference factor that reflects the difference of evidence in the target layer is obtained by modifying the attribute weight algorithm of the target layer with cosine similarity, and the entropy weight that reflects the relevance of attribute layers is obtained by modifying the attribute layer weight algorithm with Bayesian network rules. Finally, through the fault level association characteristics and the CWAA operator to correct the evidence fusion rules, the weights of attributes in different levels are effectively fused, which can reduce the diagnostic error caused by system complexity. The bench test of R6105AZLD diesel engine shows that the accuracy and robustness of diagnosis have been greatly improved after introducing the method.

    参考文献
    相似文献
    引证文献
引用本文

王承远,徐久军,严志军.基于属性层次模型的柴油机故障证据融合方法[J].控制与决策,2018,33(4):759-763

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-02
  • 出版日期:
文章二维码