基于多元异构不确定性案例学习的广义区间灰数熵权聚类模型
CSTR:
作者:
作者单位:

(南京航空航天大学经济与管理学院,南京211106)

作者简介:

张秦(1992-), 男, 博士生, 从事管理科学与工程的研究;方志耕(1962-), 男, 教授, 博士, 从事管理科学与工程等研究.

通讯作者:

E-mail: 2468279002@qq.com

中图分类号:

C394

基金项目:

基本科研业务费科研基地创新基金项目(NP20150036, NP20150037).


Generalized interval grey entropy-weight clustering model based on multiple heterogeneous uncertainty cases study
Author:
Affiliation:

(College of Economics and Management,Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实生活中多数聚类对象具有多元异构不确定性特征,表现为对象聚类指标体系异构化以及对象信息具有多元不确定性特点,而现有的不确定性多属性聚类决策方法对此类对象的聚类研究具有局限性.为此,针对聚类问题,首先,根据聚类对象多元不确定性信息的特点,提出广义区间灰数的概念,证明多元不确定性信息可统一用广义区间灰数进行表征;然后,结合极大熵思想,构建基于多元异构不确定性案例学习的广义区间灰数熵权配置模型,通过对对象相关的历史案例进行充分学习,测算各层指标的广义区间灰数熵权,以此确定各指标的聚类权重,再结合广义区间灰数的白化权函数对对象的新案例进行聚类分析;最后,通过案例研究验证所提出聚类模型的合理性和可行性.

    Abstract:

    Most of the clustering objects have the characteristic of multiple heterogeneous uncertainty in real life, which is presented via the heterogeneity of the clustering indicator system of objects and multi-uncertainty of the objects information.However, the present uncertainty multiple attribute clustering decision methods have limitations to research the clustering of these kinds of objects.Therefore, firstly the concept of generalized interval grey number is proposed according to the characteristics of multi-uncertainty information.It is proved that multi-uncertainty information can be all represented with generalized interval grey number in some specific conditions.Then, the rule of maximum entropy is introduced, the generalized interval grey entropy-weight allocation model based on multiple heterogeneous uncertainty cases study is built.The entropy-weight of multiple level is calculated through studying the cases about the objects, and then the weight of every indexes is got.Furthermore, the white function of generalized interval grey is used to analyze the clustering for the new cases of objects.Finally, the case study verifies the rationality and feasibility of the proposed clustering model.

    参考文献
    相似文献
    引证文献
引用本文

张秦,方志耕,蔡佳佳,等.基于多元异构不确定性案例学习的广义区间灰数熵权聚类模型[J].控制与决策,2018,33(8):1481-1488

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-26
  • 出版日期:
文章二维码