基于改进PSO算法的机动通信保障任务分配方法
CSTR:
作者:
作者单位:

(空军工程大学信息与导航学院,西安710077)

作者简介:

滑楠(1974-), 男, 教授, 博士后, 从事动态任务分配等研究;赵延龙(1992-), 男, 硕士生, 从事动态任务分配、群体智能的研究.

通讯作者:

E-mail: 1241492516@qq.com

中图分类号:

TP301.6

基金项目:


Method of task allocation of tactical communication support based on improved particle swarm optimization algorithm
Author:
Affiliation:

(College of Information and Navigation,Air Force Engineering University,Xián 710077,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机动通信保障问题建立任务分配模型,结合梯度下降法提出一种基于改进粒子群算法(TSPSO)的任务分配模型求解方法.在TSPSO算法中增加判断极值陷阱、粒子二次搜索、设定禁忌区域、粒子淘汰与生成4个部分,并将TSPSO算法与其他4种改进PSO算法应用于四种典型测试函数的优化.结果表明,TSPSO算法收敛精度更高、收敛速度更快.在基于TSPSO算法的任务分配模型求解方法中,基于各机动通信保障单元到不同通信地点分配概率的思想对粒子群进行编码和解码,提高模型求解效率.仿真结果表明,TSPSO算法能够快速寻找到机动通信保障任务最优分配方案.

    Abstract:

    For solving the problem of tactical communication support, a task allocation model is established, and a twice search particle swarm optimization(TSPSO) algorithm based on gradient descent is proposed. There are four parts added into the TSPSO algorithm, including determination of the extremum trap, particle twices search, set forbidden area, particle elimination and generated. The TSPSO algorithm and other four improved algorithms are applied to the optimization problem of four typical test functions. The results show that, the convergence accuracy of the TSPSO algorithm is higher, the convergence speed is faster. In the solution of the task allocation model, the probability distribution of the support units to communication places is used to encode and decode the particle swarm. The simulation results show that the proposed algorithm can quickly find the optimal allocation scheme of tactical communication support tasks.

    参考文献
    相似文献
    引证文献
引用本文

滑楠,赵延龙,于振华.基于改进PSO算法的机动通信保障任务分配方法[J].控制与决策,2018,33(9):1575-1583

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-09-06
  • 出版日期:
文章二维码