装备精确保障任务规划建模与混沌蝙蝠算法求解
CSTR:
作者:
作者单位:

(1. 空军工程大学装备管理与无人机工程学院,西安710051;2. 中国人民解放军94402部队,济南250002)

作者简介:

王坚浩(1982-), 男, 讲师, 博士, 从事装备保障任务规划、资源调度的研究;张亮(1982-), 男, 副教授, 博士, 从事装备综合保障工程等研究.

通讯作者:

E-mail: hamilton-wang@sina.com

中图分类号:

TP18;TP301

基金项目:

国家自然科学基金项目(71601183).


Task scheduling modeling and chaotic bat algorithm solving method of equipment efficient support
Author:
Affiliation:

(1. Equipment Management and Unmanned Aerial Vehicles Engineering College, Air Force Engineering University, Xián710051,China;2. PLA 94402 Troop, Ji'nan250002,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对装备精确保障任务规划中任务时序逻辑约束和资源占用冲突等问题,建立以时效优先为目标的数学模型,提出基于多维动态列表规划和混沌蝙蝠算法的混合任务规划方法.通过多维动态列表规划选择处理的任务,设计具有自适应搜索策略和变异操作的离散混沌蝙蝠算法,为选定的任务分配资源.全局搜索中自适应调整惯性权重和学习因子以达到探索与开发能力的最佳平衡,局部搜索中采用混沌变异操作以协助种群跳出局部最优.仿真算例表明,所提出算法具有较快的收敛速度和较高的求解精度.

    Abstract:

    For the problems of task sequential logic constraints and resource occupancy conflicts among equipment efficient support task scheduling, a mathematical model in pursuit of the priority of task implementation time is established, a hybrid task scheduling method based on multi-dimensional dynamic list scheduling(MDLS) and the chaotic bat algorithm is proposed. In the proposed method, the task to be disposed is selected by MDLS, then the discrete chaotic bat algorithm(DCBA) with the adaptive searching strategy and mutation operator is designed to allocate the resource to the selected task. Inertia weight and acceleration coefficients are adjusted adaptively in global search to coordinate the exploration and exploitation ability, and the chaotic mutation operator is adopted in local search to help the swarm jump out from local optimum. The simulation example illustrates that the proposed method has better performance in convergence speed and solving precision.

    参考文献
    相似文献
    引证文献
引用本文

王坚浩,张亮,史超,等.装备精确保障任务规划建模与混沌蝙蝠算法求解[J].控制与决策,2018,33(9):1625-1630

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-09-06
  • 出版日期:
文章二维码