结合KL距离与图像域分块的SAR图像分割
CSTR:
作者:
作者单位:

(1. 辽宁工程技术大学测绘与地理科学学院,辽宁阜新123000;2. 中科遥感集团科技有限公司,天津300380)

作者简介:

赵泉华(1978-), 女, 副教授, 博士生导师, 从事遥感图像建模与分析、解析几何在遥感图像处理中的应用等研究;高郡(1992-), 女, 硕士, 从事遥感图像处理及其应用的研究.

通讯作者:

E-mail: zhaoquanhua@lntu.edu.cn

中图分类号:

TP273

基金项目:

国家自然科学基金项目(41271435, 41301479);辽宁省自然科学基金项目(2015020090).


Segmentation of SAR image based on Kullback-Leibler distance and regular tessellation
Author:
Affiliation:

(1. School of Geomatics,Liaoning Technical University,Fuxin 123000 China;2. China Sciences Group Remote Sensing Group Technology Co Ltd,Tianjin 300380,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种结合KL(Kullback-Leibler)距离和图像域分块的SAR图像分割算法.首先,利用规则划分技术将图像域划分成若干规则子块,以子块为处理单元,假设子块内像素服从高斯分布,并构建特征场概率模型;其次,采用广义Potts模型定义刻画邻域子块相关性的标号场概率模型,根据贝叶斯定理,得到后验概率模型;再次,采用KL距离定义刻画同质区域间统计分布差异的异质性系数,并通过非约束吉布斯表达式构建概率分布函数,结合后验概率和吉布斯概率分布函数建立图像分割模型;然后,设计M-H(Metropolis-Hastings)采样方法,包括改变子块标号操作和分裂子块操作,模拟上述分割模型,从而获得最优分割结果;最后,通过对所提出算法和对比算法的SAR图像分割结果进行分析,充分验证了所提出算法的有效性和优越性.

    Abstract:

    In this paper, a segmentation method for synthetic aperture radar(SAR) images based on Kullback-Leibler(KL) distance and regular tessellation is proposed. Firstly, the image domain is divided into several sub-blocks by a regular tessellation, and the divided blocks are considered as basic processing units during segmentation. It is assumed that all pixels in a sub-block follow Gaussian distribution, while to modeling feature field of a given image. Then a general Potts model is utilized to model relationship between neighbor sub-blocks in label field. According to Bayes theorem, the posterior probability model is obtained by combining pixels' feature and sub-blocks' labels. Thereafter, the heterogeneity coefficient between classes is characterized with KL distance, and the corresponding probability distribution function is constructed by a non-constrained Gibbs distribution. Combining the posterior probability model and the non-constrained Gibbs distribution, the image segmentation model is established. In order to simulate the segmentation model, a Metropolis-Hastings(M-H) sampling method is designed, including the operations of changing label and splitting sub-blocks. By analyzing the segmentation results of the proposed algorithm and the comparing algorithms, the validity and superiority of the proposed algorithm are fully verified.

    参考文献
    相似文献
    引证文献
引用本文

赵泉华,高郡,赵雪梅,等.结合KL距离与图像域分块的SAR图像分割[J].控制与决策,2018,33(10):1767-1774

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-09-28
  • 出版日期:
文章二维码