基于多重分形和半监督EM的LPI雷达信号识别
CSTR:
作者:
作者单位:

(空军工程大学航空航天工程学院,西安710038)

作者简介:

王星(1965-), 男, 教授, 博士, 从事电子对抗理论与技术等研究;符颖(1995-), 女, 硕士生, 从事电子对抗理论与技术的研究.

通讯作者:

E-mail: 1571260496@qq.com

中图分类号:

TN974

基金项目:

国家自然科学基金项目(61372167);航空科学基金项目(20152096019).


Radar signal recognition based on multi-fractal and semi-supervised EM algorithm
Author:
Affiliation:

(Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xián 710038,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对先验信息不完整的非合作电子对抗背景下的低截获概率雷达信号识别问题,提出一种基于多重分形和半监督最大期望(EM)的识别算法.该算法计算出信号的多重分形谱,提取出信号的多重分形谱参数特征;针对EM算法中全部未标记样本集的加入会造成收敛速度缓慢甚至有可能影响到分类精度的缺陷,引入Self-training思想,提出一种基于Self-training的半监督EM算法.该算法通过挑选最为确定的一个或多个未标记样本来更新样本集,使得未标记样本集不断缩小进而加快分类器的训练速度,也可有效避免错误的累加,在一定程度上可提高分类精度.理论分析和仿真结果表明,在LPI雷达信号识别问题上,所提出的算法在不同的信噪比下具有更高的分类识别率和更好的实时性.

    Abstract:

    In order to solve incomplete prior information of the low probability of intercept(LPI) radar in non-cooperative electronic countermeasure environment, the recognition algorithm based on multi-fractal and semi-supervised expectation-maximization(EM) is proposed.Firstly, the multi-fractal spectrum of signal is calculated, and multi-fractal spectrum characteristic parameters are extracted.To solve the problem that the slower convergence speed and lower accuracy rate are caused when all unlabeled samples are joined in samples sets, this paper proposes a semi-supervised EM algorithm based on self-training ideology.By selecting one or some unlabeled samples to update sample sets, the unlabeled sampled sets are reduced, which can speed up the training speed of the classifier, avoid error accumulation, and improve the classification accuracy.The simulated results show that, the proposed algorithm has higher recognition rate and better real-time performance in LPI recognition.

    参考文献
    相似文献
    引证文献
引用本文

王星,符颖,陈游,等.基于多重分形和半监督EM的LPI雷达信号识别[J].控制与决策,2018,33(11):1941-1949

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-10-26
  • 出版日期:
文章二维码