面向原油总氢物性预测的数据扩增预处理方法
CSTR:
作者:
作者单位:

(东北大学流程工业综合自动化国家重点实验室,沈阳110004)

作者简介:

易令(1992-), 男, 博士, 从事深度学习及其应用的研究;丁进良(1976-), 男, 教授, 博士, 从事复杂工业过程智能建模与优化控制、生产全流程运行优化、智能优化算法及工业应用等研究.

通讯作者:

E-mail: jlding@mail.neu.edu.cn

中图分类号:

TP183

基金项目:

国家自然科学基金项目(61590922, 61525302);教育部基本科研业务费项目(N160801001, N161608001).


Data pretreatment approach for crude oil hydrogen properties prediction
Author:
Affiliation:

(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对原油总氢物性回归预测中核磁共振光谱数据不足的问题,结合深度学习相关理论,提出一种光谱数据扩增预处理方法.根据样本输入和标签的相关系数,在原始样本中加入随机噪声以生成虚拟样本;处理样本数据结构以利于卷积神经网络特征提取,并加入数据冗余改进该结构以进一步提高数据特征提取的完整性;搭建实现原油总氢物性回归预测的卷积神经网络(Regression forecasting convolutional neural network,RF-CNN).实验结果表明,对于总氢物性的回归预测,该数据扩增预处理方法不但可以解决原始数据训练中的过拟合现象,而且相比于传统的偏最小二乘(PLS)回归方法,更具稳定性和精确性.

    Abstract:

    Aiming at the problem of lack of nuclear magnetic resonance spectroscopy data in the prediction of total hydrogen activity of crude oil, combined with the theory of deep learning, a pre-processing method of spectral data amplification is proposed. According to the correlation coefficient of the sample input and the label, the random noise is added to the original sample to generate the virtual sample. The sample data structure is processed to facilitate the feature extraction of the convolutional neural network, and the data redundancy is added to improve the structure to further improve the integrity of the data feature extraction. A regression forecasting convolutional neural network(RF-CNN) is designed to realize the regression prediction of the total hydrogen content of crude oil. Experiments show that, for the regression prediction of total hydrogen properties, the amplified data not only solves the over-fitting phenomenon in the original data training, but also has more stability and accuracy than the traditional partial least squares(PLS) dimensionality reduction method.

    参考文献
    相似文献
    引证文献
引用本文

易令,吕忠元,丁进良,等.面向原油总氢物性预测的数据扩增预处理方法[J].控制与决策,2018,33(12):2153-2160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-13
  • 最后修改日期:2018-06-01
  • 录用日期:
  • 在线发布日期: 2018-11-30
  • 出版日期:
文章二维码