基于尖峰自组织模糊神经网络的需水量预测
CSTR:
作者:
作者单位:

(1. 北京工业大学信息学部,北京100124)

作者简介:

乔俊飞(1968-), 男, 教授, 博士生导师, 从事神经网络智能控制及其应用等研究;张力(1992-), 女, 硕士生, 从事神经网络建模、需水量预测的研究.

通讯作者:

E-mail: zhanglily@emails.bjut.edu.cn

中图分类号:

TP183

基金项目:

国家自然科学基金项目(61533002,61603009);北京市科技专项课题领军人才项目(Z15110000013151010);北京工业大学日新人才计划项目(2017-RX(1)-04).


Prediction of water demand based on spiking self-organizing fuzzy neural network
Author:
Affiliation:

(1. Faculty of Information Technology, Beijing University of Technology, Beijing100124, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    短期需水量预测是城市给水管网安全稳定运行的前提和保证.针对日需水量预测提出一种基于尖峰机制的自组织模糊神经网络(SSOFNN)模型.针对影响变量复杂多变的特点,采用主成分分析对原始数据进行降维处理,获取线性无关的主成分变量作为预测模型输入数据.SSOFNN模型根据尖峰强度和误差指标在训练过程中对隐含层神经元进行增长修剪,结合改进Leveberg-Marquardt算法简化参数更新过程中的计算过程,大大减少了计算量,能够获得紧凑的网络结构,且跟踪精度高,运行时间短,预测效果好.

    Abstract:

    Short-term prediction of water demand provides basic guarantee for water supply system operation and management. In this study, an effective model for daily water demand forecasting is proposed. Firstly, principle component analysis(PCA) is utilized to simplify the complexity and reduce the correlation between influence variables, and the score values of selected principle components(PCs) turn into the irrelevant input data of fuzzy neural network(FNN), which models the prediction of water demand. Moreover, an improved Levenberg-Marquardt(ILM) algorithm is employed to optimize the parameters of FNN simultaneously, the problems of heavy computing burden and limited memory space can be solved. Most of all, a growing-pruning mechanism based on spiking integrate-and-fire(IF) model is applied to FNN in order to realize structural self-organization. Finally, contrast experiments are implemented to demonstrate that the spiking self-organizing fuzzy neural network(SSOFNN) has better prediction performance and capability to handle practical issues.

    参考文献
    相似文献
    引证文献
引用本文

乔俊飞,张力,李文静.基于尖峰自组织模糊神经网络的需水量预测[J].控制与决策,2018,33(12):2197-2202

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-09
  • 最后修改日期:2018-05-07
  • 录用日期:
  • 在线发布日期: 2018-11-30
  • 出版日期:
文章二维码