基于非结构数据流行学习的碳价格多尺度组合预测
CSTR:
作者:
作者单位:

(1. 安徽大学商学院,合肥230601;2. 北卡罗来纳州立大学工业与系统工程系,美国罗利27695;3. 东南大学经济管理学院,南京211189;4. 安徽大学数学科学学院,合肥230601;5. 西安交通大学管理学院,西安710049;6. 安徽大学经济学院,合肥230601)

作者简介:

刘金培(1984-), 男, 副教授, 博士, 从事预测与决策分析等研究;郭艺(1996-), 女, 硕士生, 从事组合预测的研究.

通讯作者:

E-mail: liujinpei2012@163.com.

中图分类号:

O212

基金项目:

国家自然科学基金项目(71501002, 61502003, 71771001, 71701001);安徽省自然科学基金项目(1608085 QF133,1508085QG149);安徽省高校省级自然科学研究重点项目(KJ2017A026).


Multi-scale combined forecast of carbon price based on manifold learning of unstructured data
Author:
Affiliation:

(1. School of Business,Anhui University,Hefei230601,China;2. Department of Industrial and Systems Engineering,North Carolina State University,Raleigh27695, USA;3. School of Economics and Management,Southeast University,Nanjing211189,China;4. School of Mathematical Sciences,Anhui University,Hefei230601,China;5. School of Management, Xián Jiaotong University,Xián 710049,China;6. School of Ecnomics,Anhui University,Hefei230601,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    碳交易价格的有效预测对制定符合国情的碳金融市场政策以及碳金融市场的风险管理都具有重要意义.对此,提出一种基于非结构数据流行学习的碳价格多尺度组合预测方法.首先,利用网络搜索指数提取碳价格相关的非结构化数据,基于等度量映射流行学习对其进行降维;然后,对降维后的非结构化数据、其他影响因素结构化数据、碳交易价格分别进行经验模态分解(Empirical mode decomposition,EMD),得到不同个数的本征模函数(Intrinsic mode function,IMF),并采用Fine-to-coarse方法对IMF进行重构,得到高频序列、低频序列和趋势项;最后,利用自回归积分滑动平均模型(Autoregressive integrated moving average model,ARIMA)、偏最小二乘(Partial least squares,PLS)回归和神经网络对高频数据、低频数据和趋势项进行预测,将3种预测结果进行集成,得到最终预测值.仿真实验结果表明,所提出的方法可以有效利用多源信息,具有较高的预测精度和良好的适用性.

    Abstract:

    Forecasting carbon trading price effectively is of great significance for the formulation of carbon financial market policies that suit to Chinese condition and the risk management of carbon financial market. This paper proposes a multi-scale combined forecast method for carbon price based on manifold learning of unstructured data. Firstly, the unstructured data related to carbon price is extracted using the network search index, and dimensionality reduction is performed based on the isometric mapping manifold learning. Then, the structured data of other influencing factors and the carbon trading price are decomposed into a variable number of intrinsic mode functions(IMFs) using empirical mode decomposition(EMD) respectively. The IMF is reconstructed to get high frequency sequence, low frequency sequence and trend item based on the fine-to-coarse method. Moreover, autoregressive integrated moving average model(ARIMA), Partial least squares(PLS) regression and neural network are used to forecast high-frequency data, low-frequency data and trend items, which are aggregated to get the final forecast result. The results of simulated experiments show that the proposed method can effectively use multi-source information and has high prediction accuracy and good applicability.

    参考文献
    相似文献
    引证文献
引用本文

刘金培,郭艺,陈华友,等.基于非结构数据流行学习的碳价格多尺度组合预测[J].控制与决策,2019,34(2):279-286

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-23
  • 出版日期:
文章二维码