基于VSPSO和A-G网络的掘进机动态路径规划
CSTR:
作者:
作者单位:

(1. 中国矿业大学(北京) 机电与信息工程学院,北京100083;2. 中国矿业大学信息与控制工程学院,江苏徐州221116)

作者简介:

杨健健(1988-), 男, 讲师, 博士, 从事优化算法及应用等研究;唐至威(1992-), 男, 硕士生, 从事优化算法的研究.

通讯作者:

E-mail: fchtangzhiwei@163.com.

中图分类号:

TD421;TP242

基金项目:

国家973计划项目(2014CB046306);中央高校基本科研业务费专项基金项目(800015FC).


Dynamic path planning of roadheader based on VSPSO and A-G net
Author:
Affiliation:

(1. School of Mechanical Electronic and Information Engineering,China University of Mining and Technology(Beijing),Beijing100083,China;2. School of Information and Control Engineering,China University of Mining and Technology,Xuzhou221116,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决部分断面悬臂式掘进机行进路径规划问题,实现掘进机的无人化掘进,提出基于变异自适应粒子群算法(VSPSO)和行为规则栅格网络(A-G)的掘进机动态路径规划方法.通过分析掘进机行进特征和煤矿井下巷道特征,建立基于行为规则的栅格网络模型和代价模型,给定代价函数的类型及耗费系数的取值范围,以巷道模拟数据为基础,通过所提出的VSPSO算法和6种改进型PSO算法进行掘进机行进路径规划并对结果进行比较.比较结果表明,在测试函数下,VSPSO算法收敛速度更快、收敛精度更高,在行为规则栅格网络模型下,VSPSO算法的收敛速度与精度最高,且能够规划出符合掘进机行为特征的最优行进路径.

    Abstract:

    This paper proposes a dynamic path planning method in order to solve the problem of traveling path planning of partial section cantilever roadheader and realize unmanned tunneling of roadheader. This method is based on variation self-adaptive particle swarm optimization algorithm(VSPSO) and action-grid(A-G). Based on the analysis of roadheader traveling characteristics and coal mine roadway characteristics, a grid network model and a cost model based on behavior rules are established. By setting the type of cost function and the range of consumption coefficient in the model, and based on the roadway simulation data, we complete a comparative analysis of the proposed VSPSO algorithm and six improved PSO algorithm in the roadheader path planning model. The experimental results show that under the test function, the VSPSO algorithm converges faster and converges more accurately. The VSPSO algorithm has the highest convergence speed and accuracy under the behavior rule grid network model, and can plan the optimal traveling path according to the behavior characteristics of roadheader.

    参考文献
    相似文献
    引证文献
引用本文

杨健健,唐至威,王子瑞,等.基于VSPSO和A-G网络的掘进机动态路径规划[J].控制与决策,2019,34(3):642-648

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-04
  • 出版日期:
文章二维码