基于组合分类器的不同状态下脑电信号分类
CSTR:
作者:
作者单位:

(1. 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016;2. 天津大学电气自动化与信息工程学院,天津300072)

作者简介:

张进(1987-), 男, 助理研究员, 博士, 从事机器人轨迹规划与控制、脑-机接口的研究;李伟(1957-), 男, 研究员, 博士生导师, 从事模糊控制、脑-机接口的研究.

通讯作者:

E-mail: wli@csub.edu.

中图分类号:

TP24

基金项目:

中国科学院前沿科学重点研究项目(QY2DY-SSW-JSC005);国家自然科学基金项目(61473207, 61233013).


Classification of EEG signals in different states based on combined classifier
Author:
Affiliation:

(1. State Key Laboratory of Robotics,Shenyang Institute of Automation of Chinese Academy of Sciences,Shenyang 110016,China;2. School of Electrical Engineering and Automation,Tianjin University,Tianjin300072,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当手臂操作与脑电控制被同时应用到水下机器人操作中,且操作人员处于不同作业状态时,针对使用单一脑电信号分类器无法获得较为理想的控制意图识别准确率问题,提出使用组合分类器选取分类结果和根据实际作业情况的特殊性修正分类结果的方法来提升识别准确率.首先,使用Fisher判别方法分别对无手臂操作和存在手臂操作产生的数据进行训练,得到两种作业状态下的分类器;其次,将两分类器进行组合并使用曲线拟合的方式确定用来判定分类结果的基准距离差值(该差值的选取考虑了个体差异);再次,根据实际作业情况的特殊性使用距离修正函数对距离差值进行修正;最后,通过比较基准距离差值与修正后距离差值的大小来确定最终分类结果.为了验证所提方法的有效性,邀请了6位被试者参与测试过程.实验结果显示,在设计的在线实验中,相对于其他3种方法,所提方法在识别准确率上分别提升了13.42%、5.55%和5.55%,说明所提方法是可行且有效的.

    Abstract:

    It is difficult to use a single EEG classifier to achieve an ideal recognition accuracy of control intention, when the operator is in different operating states, and both arm operation and EEG control are used in the underwater vehicle operation. An algorithm is proposed to improve the recognition accuracy by selecting the classification result by using the combined classifier and correcting the classification result according to the specific situation of the actual operation. Firstly, the Fisher discriminant method is used to train the data generated by the armless operation and the arm operation to get the classifier in two operation states. Then, the two classifiers are combined, and the curve fitting is used to determine the reference distance difference which is used to determine the classification result(the selection of the difference takes into account individual differences). Futhermore, the distance difference is corrected by the distance correction function according to the particularity of the actual operation situation. Finally, the final classification result is determined by comparing the difference between the reference distance difference and the corrected distance difference. In order to verify the effectiveness of the proposed algorithm, six subjects are invited to participate in the testing process. The experimental results show that the proposed algorithm improves the recognition accuracy by 13.42%, 5.55% and 5.55% respectively, compared with the other three methods in the designed online experiment, which demonstrates that the proposed algorithm is feasible and effective.

    参考文献
    相似文献
    引证文献
引用本文

张进,李伟,俞建成,等.基于组合分类器的不同状态下脑电信号分类[J].控制与决策,2019,34(5):897-907

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-17
  • 出版日期:
文章二维码