基于改进邻域搜索策略的人工蜂群算法
CSTR:
作者:
作者单位:

(西安理工大学机械与精密仪器工程学院, 西安710048)

作者简介:

魏锋涛(1976-), 男, 副教授, 博士, 从事现代优化设计理论与方法、复杂产品多目标多学科设计优化等研究;郑建明(1968-), 男, 教授, 博士, 从事优化设计理论及工程应用等研究.

通讯作者:

E-mail: weifengtao@xaut.edu.cn.

中图分类号:

TP301

基金项目:

国家自然科学基金项目(51575443, 51475365);陕西省自然科学基础研究计划项目(2017JM5088);陕西省教育厅科学研究计划项目(15JK1521);西安理工大学博士启动基金项目(102-451115002).


Artificial bee colony algorithm based on improved neighborhood search strategy
Author:
Affiliation:

(College of Mechanical and Precision Instrument Engineering,Xián University of Technology,Xián710048,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人工蜂群算法存在易陷入局部最优、收敛速度慢的缺陷,提出一种改进邻域搜索策略的人工蜂群算法.首先,将混沌思想和反向学习方法引入初始种群,设计混沌反向解初始化策略,以增大种群多样性,增强跳出局部最优的能力;然后,在跟随蜂阶段根据更新前个体最优位置引入量子行为模拟人工蜂群获取最优解,通过交叉率设计更新前个体最优位置,并利用势阱模型的控制参数提高平衡探索与开发的能力,对观察蜂邻域搜索策略进行改进,以提高算法的收敛速度和精度;最后,将改进人工蜂群算法与粒子群算法、蚁群算法以及其他改进人工蜂群算法进行比较,利用12个标准测试函数进行仿真分析.结果表明,改进算法不仅提高了收敛速度和精度,而且在高维函数优化方面具有一定的优势.

    Abstract:

    As to overcome the drawback of easily falling into local optimum and slow convergence rate of the conventional artificial bee colony algorithm, this paper proposes an artificial bee colony algorithm based on the improved neighborhood search strategy. Firstly, in order to enhance the diversity of population and prevent local optimum, a kind of chaotic anti-base initialization mechanism is designed according to the chaotic thoughts and opposed-based learning method. Then, in the following stage of following bee stage, the quantum behavior is introduced to simulate the optimal solution of the artificial bee according to the optimal position of the former individual, the optimal position of the former individual is designed with crossover, and the control parameters of the well model is used to improve the balance exploration and development capability, a strategy of neighborhood search improvement strategy in observation is designed, to improve the convergence accuracy of the algorithm, Finally, the proposed algorithm is compared with the particle swarm optimization algorithm, ant colony algorithms, and other improved artificial colony algorithm, and simulation analysis is made on 12 standard test functions, the results show that the proposed algorithm not only improves the convergence speed and accuracy, but also has certain advantages in terms of high-dimensional function optimization.

    参考文献
    相似文献
    引证文献
引用本文

魏锋涛,岳明娟,郑建明.基于改进邻域搜索策略的人工蜂群算法[J].控制与决策,2019,34(5):965-972

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-17
  • 出版日期:
文章二维码