基于栈式卷积自编码的视觉SLAM闭环检测
CSTR:
作者:
作者单位:

(1. 东北大学信息科学与工程学院,沈阳110004;2. 东北大学机器人科学与工程学院,沈阳110004)

作者简介:

张云洲(1974-), 男, 教授, 博士, 从事智能机器人、计算机视觉领域等研究;胡航(1993-), 男, 硕士生, 从事计算机视觉的研究.

通讯作者:

E-mail: nickhoo@stumail.neu.edu.cn.

中图分类号:

TP24

基金项目:

国家自然科学基金项目(61471110, 61733003);国家重点研发计划项目(2017YFC080500015005);中央高校基本科研业务费专项基金项目(N172608005, N160413002).


Loop closure detection for visual SLAM based on stacked convolutional autoencoder
Author:
Affiliation:

(1. College of Information Science and Engineering,Northeastern University,Shenyang110004,China;2. Faculty of Robot Science and Engineering,Northeastern University,Shenyang110004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    同时定位与构图(SLAM)主要用于解决移动机器人在未知环境中进行地图构建和导航的问题,是移动机器人实现自主移动的基础.闭环检测是视觉SLAM的关键步骤,对构建一致性地图和减少位姿累积误差具有重要作用.当前的闭环检测方法通常采用传统的SIFT、SURF等特征,很容易受到环境影响,为了提高闭环检测的准确性和鲁棒性,提出基于无监督栈式卷积自编码(CAEs)模型的特征提取方法,运用训练好的CAEs卷积神经网络对输入图像进行学习,将输出的特征应用于闭环检测.实验结果表明:与传统的BoW方法及其他基于深度学习模型的方法相比,所提出的算法能够有效降低图像特征的维数并改善特征描述的效果,可以在机器人SLAM闭环检测环节获得更好的精确性和鲁棒性.

    Abstract:

    As the foundation to realize the autonomous movement of mobile robots, simultaneous localization and mapping(SLAM), which is mainly used to solve the problem of mobile robots mapping and navigation in unknown environment, has been paid more attention in recent years. Loop closure detection, one of the key steps of visual SLAM, plays an important role to make a globally consistent map and reduce accumulated error of robot pose. Current methods for loop closure detection are vulnerable to environmental influence because they always adopt traditional features such as SIFT and SURF. To improve the accuracy and robustness of loop closure detection, a method based on unsupervised Stacked Convolutional Autoencoders(CAEs) model is proposed. The trained CAEs convolution neural network is used to learn from input images, while the output features are used for loop closure detection. The results of experiment show that the proposed method, compared with traditional BoW-based methods and other methods based on deep learning model, can effectively reduce the dimension of image features and improve the effect of feature description. Thus, it can attain better accuracy and robustness in loop closure detection of robot SLAM.

    参考文献
    相似文献
    引证文献
引用本文

张云洲,胡航,秦操,等.基于栈式卷积自编码的视觉SLAM闭环检测[J].控制与决策,2019,34(5):981-988

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-17
  • 出版日期:
文章二维码