基于深度去噪核映射的长期预测模型
CSTR:
作者:
作者单位:

(大连理工大学控制科学与工程学院,辽宁大连116024)

作者简介:

王强(1985-), 男, 博士生, 从事流程工业过程建模与优化的研究;王伟(1955-), 男, 教授, 博士生导师, 从事复杂系统建模与控制、流程工业综合自动化技术等研究.

通讯作者:

E-mail: lvzheng@dlut.edu.cn.

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61533005,61703070,61603069);中央大学基础研究基金项目(DUT16RC(3)031).


Deep denoising kernel mapping-based long-term prediction model
Author:
Affiliation:

(School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对最小二乘支持向量机核函数结构较浅对其长期预测模型精度的限制,采用深度学习中逐层特征提取的思想,提出基于深度去噪核映射的最小二乘支持向量机长期预测模型.该模型通过深度核网络的逐层变换,将样本数据映射到深度特征空间,从而有效提高其长期预测的精度.此外,为了提高模型对含高噪声数据的拟合性能,将去噪算法融入深度核网络的训练过程中,并通过反向传播算法对核网络参数进行整体微调.标准数据集及实际工业数据的仿真实验结果表明,所提方法能够有效提取数据中蕴含的特征信息,提高预测模型的精度.

    Abstract:

    In this study, employing the idea of layer by layer feature extraction in deep learning, a deep denoising kernel mapping-based least square support vector machine long-term prediction model is proposed. The proposed model can deal with the poor long-term prediciton ability problem of the least square support vector machine with shallow kernel structure. By transforming through the deep kernel network layer by layer, the sample data are mapped to the deep feature space to improve the prediction accuracy. In addtion, the denoising algorithm is incorporated into the training process of the deep kernel network to improve the fitting performance for the data with high level noises. Furthermore, the whole network is fine-tuned to further improve the modeling ability by using the back propagation algorithm. The results of the standard dataset and the actual industrial data simulation experiments show that the proposed method can extract the feature information contained in the data, and effectively improve the prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王强,吕政,王霖青,等.基于深度去噪核映射的长期预测模型[J].控制与决策,2019,34(5):989-996

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-17
  • 出版日期:
文章二维码