基于局部线性嵌入的免疫检测器优化生成算法
CSTR:
作者:
作者单位:

(哈尔滨理工大学计算机科学与技术学院,哈尔滨150080)

作者简介:

席亮(1983-), 男, 博士, 副教授, 从事人工智能与应用、网络与信息安全等研究;张凤斌(1965-), 男, 教授, 博士生导师, 从事网络与信息安全等研究.

通讯作者:

E-mail: xiliang@hrbust.edu.cn.

中图分类号:

TP393.08

基金项目:

国家自然科学基金项目(61172168);黑龙江省教育厅科学技术研究项目(12541130);黑龙江省自然科学项目(F2018019)


Immune detector optimized generation algorithm based on locally linear embedding
Author:
Affiliation:

(School of computer Science and Technology,Harbin University of Science and Technology, Harbin 150080,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    网络安全已上升到国家安全战略层面,入侵检测技术是其重要的组成部分,已得到广泛关注.在基于免疫的入侵检测研究中,针对传统实值否定选择算法不利于高效分析数据而造成的检测器生成速度慢、检测效率低等问题,引入局部线性嵌入算法,借鉴其能对高维数据进行映射降维的特点,提出一种基于局部线性嵌入的免疫检测器优化生成算法,利用局部线性嵌入对高维数据预处理优化降维,并结合实值否定选择算法生成检测器.将该算法用于检测模型,从而提升检测器的生成速率,并可保证生成的检测器高效地处理高维数据.该算法在降维前后可保证样本的局部线性结构不变,具有可变参数少、计算时间短的特点.实验结果表明,所提出算法在显著提高检测器生成速率和对数据检测效率的基础上,检测性能也表现出很好的水平.

    Abstract:

    Nowadays, network security has risen to the national security strategy level. As a significant part of network security, the intrusion detection technology has aroused general concern. Based on the research of the immune mechanism intrusion detection, aiming at the problems concerning the slow generation of the detector and the low detection efficiency caused by the traditional real-valued negation selection algorithm is not conducive to the efficient analysis of the data, this paper introduces the local linear embedding algorithm which can be applied to reduce the high dimensional data preprocessing optimization dimension due to the characteristic of map the dimensionality of high-dimensional data, and combines with the real-valued negative selection algorithm to generate the detectors. Then, using this algorithm to detection model can enhance the generation velocity of the detectors and ensure the generated detector to process the high-dimensional data efficiently. The algorithm can ensure the local linear structure of the sample is the same after the dimensionality reduction, and it also has the characteristics of less variable parameters and shorter computation time. The experimental results show that this algorithm can significantly improves the detector generation velocity and the detection efficiency of the data, and it is also outstanding in the detection performance.

    参考文献
    相似文献
    引证文献
引用本文

席亮,蒋涛,张凤斌.基于局部线性嵌入的免疫检测器优化生成算法[J].控制与决策,2019,34(5):1032-1036

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-17
  • 出版日期:
文章二维码