基于节点优化型DAG-LDM的机组滚动轴承故障诊断方法
CSTR:
作者:
作者单位:

(1. 湖南科技大学信息与电气工程学院,湖南湘潭411201;2. 湖南大学汽车车身先进设计制造国家重点实验室,长沙410082;3. 长沙师范学院信息科学与工程学院,长沙410100)

作者简介:

通讯作者:

E-mail: zhaohualiu2009@hotmail.com.

中图分类号:

TP13

基金项目:

国家自然科学基金项目(61503134,61573299);国家自然科学基金青年项目(61503132);湖南省自然科学基金项目(2018JJ2134,2016JJ4003);湖南大学汽车车身先进设计制造国家重点实验开放基金项目(31715010);湖南省科技人才专项湖湘青年英才项目(2018RS3095).


Fault diagnosis method of wind turbine rolling bearing based on node optimized DAG-LDM
Author:
Affiliation:

(1. School of Information and Electrical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha 410082,China;3. College of Information Science and Engineering,Changsha Normal University,Changsha 410100,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承作为风电机组的关键部件,对于整个机组的安全运行起着决定性作用.针对机组滚动轴承故障诊断问题,提出一种节点优化型有向无环图大间隔分布机(O-DAG-LDM)的故障诊断方法.结合DAG多分类扩展性能与LDM二分类器泛化性能的优点,构建一种面向滚动轴承故障诊断的DAG结构扩展式LDM多分类器方法.在DAG-LDM算法框架下,利用优化算法对DAG节点进行优化排列以减小随机排布引起的累积误差,提高LDM故障分类准确率.实验表明,与其他主流智能诊断方法相比,所提出的节点优化型DAG-LDM故障诊断方法具有较高的准确率和更好的抗噪性能.

    Abstract:

    As a key component, the rolling bearing plays a decisive role in the safe operation of the whole wind turbine. To solve the problem of fault diagnosis in rolling bearings, a fault diagnosis method based on optimized directed acyclic graph combing with large margin distribution machine (O-DAG-LDM) is proposed. Combining the advantages of DAG multi-class scalable features with the generalization performance of LDM two-classifier, a DAG structure extended LDM multiple classifier method for rolling bearing fault diagnosis is constructed. In the framework of the DAG-LDM method, a node optimization algorithm is used to optimize the DAG nodes to reduce the cumulative error caused by random permutation, and improve the accuracy of LDM fault classification. The experiment shows that the proposed O-DAG-LDM method for fault diagnosis has higher accuracy and better capability of anti-noise immunity in comparison with other mainstream intelligent diagnosis methods.

    参考文献
    相似文献
    引证文献
引用本文

刘朝华,孟旭东,陆碧良,等.基于节点优化型DAG-LDM的机组滚动轴承故障诊断方法[J].控制与决策,2019,34(7):1394-1400

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-06-28
  • 出版日期:
文章二维码