基于多模态特征深度融合的微博流事件检测与跟踪
CSTR:
作者:
作者单位:

(1. 东北大学计算机科学与工程学院,沈阳110169;2. 教育部医学影像计算重点实验室,沈阳110169)

作者简介:

通讯作者:

E-mail: wangdaling@cse.neu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61772122).


Event detection and tracking in microblog stream based on multimodal feature deep fusion
Author:
Affiliation:

(1. College of Computer Science and Engineering,Northeastern University,Shenyang110169,China;2. Key Laboratory of Medical Image Computing,Ministry of Education,Shenyang110169,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为一种重要的社会媒体平台,分析、检测并跟踪微博内重大社会事件可以及时提供舆论焦点.但因其碎片化、异构性和实时性,传统方法很难有效分析海量微博,为此,提出一种基于多模态特征深度融合的微博事件检测与跟踪框架.首先基于文本处理对微博事件进行标注;然后用多模态特征深度融合实现事件的检测与表示;最后利用基于时间平滑的图变换模型完成事件流的跟踪.在真实数据集上的实验表明,所提出的方法能有效检测和跟踪微博流事件.

    Abstract:

    As an important social media platform, analyzing, detecting and tracking the important social events in microblog can provide public issues in time. However, due to the fragmentation, heterogeneity and real-time characteristics of microblog, traditional techniques can hardly analyze mass microblog efficiently. Therefore, a social event detection and tracking framework based on multimodal feature deep fusion is proposed. Firstly, in the framework, events in microblogs are labeled by text process. Then, the detection and description of events are achieved by multimodal feature deep fusion. Finally, the tracking of the event stream is accomplished by the graph variation based on time smooth. The experiments in a real dataset show that the proposed method can detect and track events in the microblog stream effectively.

    参考文献
    相似文献
    引证文献
引用本文

熊宇,张一飞,冯时,等.基于多模态特征深度融合的微博流事件检测与跟踪[J].控制与决策,2019,34(7):1409-1416

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-06-28
  • 出版日期:
文章二维码