自适应协同进化蝙蝠算法
CSTR:
作者:
作者单位:

(海军航空大学岸防兵学院,山东烟台264001)

作者简介:

通讯作者:

E-mail: hylz1008@126.com.

中图分类号:

TP18

基金项目:

国家自然科学基金项目(51605487).


Adaptive cooperation evolutionary bat algorithm
Author:
Affiliation:

(College of Coastal Defense Force,Naval Aeronautical University, Yantai 264001,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蝙蝠算法作为一种新型元启发式进化算法,不可避免在进化过程中存在陷入局部极值的危险.为了有效提高蝙蝠算法的进化性能,提出一种自适应协同进化的蝙蝠算法(ACEBA).为保证算法具有良好的进化结构,提出采用自适应进化种群结构,使得种群结构能够依据种群多样性在集中式结构与分布式结构之间进行切换.为协调实现主种群的勘探和子种群的开采,引入优良个体解对速度和位置进行更新,并在主种群和子种群内采用相适应的更新方式,同时将原有固定参数推广到自适应变化,并对蝙蝠行为的多普勒效应进行补偿.最后对所提出的算法进行收敛性分析和仿真验证,并与相关算法进行对比分析,充分验证了算法的正确性和有效性.

    Abstract:

    The bat algorithm is a novel meta-heuristic nature-inspired algorithm, and also easy to trap into local optimum inevitably, therefore, the paper proposes an adaptive cooperation evolutionary bat algorithm (ACEBA). In order to ensure the proper framework for the algorithm, the evolutionary framework can be switched between the centralized and distributed framework according to the diversity judgment criteria in order to ensure the favorable evolutionary framework for the algorithm. In order to ensure the exploration ability of the main population and the exploitation ability of the sub-population, the position and velocity for the bat are updated, and the update way in main population is different from the sub-population. The compensation for Doppler effect in echoes is considered and the former fixed constant can change adaptively. Finally, the convergence of the algorithm is also deduced and verified by simulation results show the effectiveness and correctness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

刘振,鲁华杰,刘文彪.自适应协同进化蝙蝠算法[J].控制与决策,2019,34(8):1626-1634

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-12
  • 出版日期:
文章二维码