基于混沌搜索策略的鲸鱼优化算法
CSTR:
作者:
作者单位:

(1. 空军工程大学装备管理与无人机工程学院,西安710051;2. 中国人民解放军94402部队,济南250002)

作者简介:

通讯作者:

E-mail: hamilton_wang@sina.com.

中图分类号:

TP18;TP301

基金项目:

国家自然科学基金项目(61503409).


Whale optimization algorithm based on chaotic search strategy
Author:
Affiliation:

(1. Equipment Management and Unmanned Aerial Vehicles Engineering College,Air Force Engineering University,Xián710051,China;2. PLA 94402 Troop,Ji'nan250002,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对鲸鱼优化算法存在探索和开发能力难以协调、易陷入局部最优的不足,提出一种基于混沌搜索策略的鲸鱼优化算法(CWOA).首先,采用混沌反向学习策略产生初始种群,为全局搜索多样性奠定基础;其次,设计收敛因子和惯性权重的非线性混沌扰动协同更新策略以平衡全局探索和局部开发能力;最后,将种群进化更新与最优个体的混沌搜索机制相结合,以减小算法陷入局部最优的概率.对10个基准测试函数和6个复合测试函数进行优化,实验结果表明,CWOA在收敛速度、收敛精度、鲁棒性方面均较对比算法有较大提升.

    Abstract:

    A whale optimization algorithm based on the chaotic search strategy (CWOA) is proposed to overcome the drawbacks of being difficult to coordinate the exploration and exploitation ability, and easily trapped into local optimum. In the proposed algorithm, the chaotic opposition-based learning strategy is used to generate initial population, which strengthens the diversity of population in the global searching process. Then, a nonlinearly chaotic disturbance cooperative updating strategy for the convergence factor and inertia weight is designed to balance the exploration and exploitation ability. Finally, the chaotic search strategy for optimum individual is combined with evolutionary population updating to avoid the possibility of being trapped into local optimum. The optimization experiments are conducted on the 10 benchmark functions and 6 composite functions. Simulation results show that the proposed CWOA has fast convergence and more precise convergence than other comparison algorithms.

    参考文献
    相似文献
    引证文献
引用本文

王坚浩,张亮,史超,等.基于混沌搜索策略的鲸鱼优化算法[J].控制与决策,2019,34(9):1893-1900

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-06
  • 出版日期:
文章二维码