杂波协方差矩阵结构的融合估计方法
CSTR:
作者:
作者单位:

(海军航空大学信息融合研究所,山东烟台264001)

作者简介:

通讯作者:

E-mail: work_jt@163.com.

中图分类号:

TN957.51

基金项目:

国家自然科学基金项目(61471379, 61790551, 61102166);国防科技基金项目(2012028);装备发展部“十三五”预研项目(41413060101);泰山学者工程专项经费项目.


A fusion estimation method for covariance matrix structure of clutter
Author:
Affiliation:

(Research Institute of Information Fusion,Naval Aviation University,Yantai 264001,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对特定杂波背景下的最优或次优杂波协方差矩阵估计方法难以适应过渡杂波环境的问题,提出协方差矩阵结构的融合估计方法,通过调整参数涵盖现有的3种杂波协方差矩阵估计方法,并分析所提出方法对应的自适应归一化匹配滤波器的自适应特性.其次,确定了控制参数的经验公式,经验公式符合数值结果.最后,从估计精度、恒虚警率特性和检测性能3个方面对所提出方法和已有方法进行对比分析.仿真结果表明,在过渡杂波环境中,所提出方法的精度更高、检测效果更好,对实际杂波非高斯程度时空渐变性具有较强的适应能力.

    Abstract:

    This paper addresses the problem that the optimal or suboptimal clutter covariance matrix estimation method in the specific clutter background is difficult to adapt to the transitional clutter environment. Firstly, a fusion estimation method for the matrix covariance matrix structure, which covers three existing clutter covariance matrix estimation methods by adjusting the parameter, is proposed, and the adaptive characteristics of the adaptive normalized matched filter corresponding to the proposed method are analyzed and verified by simulation experiments. Then, the empirical formula of the parameter is determined, and it conforms to the numerical results. Finally, the proposed method and the existing methods are compared and analyzed from the aspects of estimation accuracy, constant false alarm rate and detection performance. The results show that the proposed method, which has strong ability to adapt to the temporal and spatial gradients of the clutter, has higher accuracy and better detection performance in the transitional clutter environment.

    参考文献
    相似文献
    引证文献
引用本文

王智,简涛,何友.杂波协方差矩阵结构的融合估计方法[J].控制与决策,2019,34(9):2010-2014

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-06
  • 出版日期:
文章二维码