基于邻域粒化条件熵的增量式属性约简算法
CSTR:
作者:
作者单位:

(1. 安徽工业经济职业技术学院计算机与艺术学院,合肥230051;2. 西南交通大学信息科学与技术学院,成都610031)

作者简介:

通讯作者:

E-mail: zhaoxiaolong1974@163.com.

中图分类号:

TP18

基金项目:

安徽省高校自然科学研究重点项目(KJ2016A107,KJ2017A645);安徽省高校质量工程项目(2016 JXTD019,2015GXK123.)


Incremental attribute reduction algorithm based on neighborhood granulation conditional entropy
Author:
Affiliation:

(1. College of Computer and Art,Anhui Technical College of Industry and Economy,Heifei230051,China;2. School of Information Science & Technology,Southwest Jiaotong University,Chengdu610031,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    增量式属性约简是针对动态型数据的一种重要的数据挖掘方法,目前已提出的增量式属性约简算法大多基于离散型数据构建,很少有对数值型数据进行相关的研究.鉴于此,提出一种数值型信息系统中对象不断增加的增量式属性约简算法.首先,在数值型信息系统中建立一种分层的邻域粒化计算方法,并基于该方法提出邻域粒化的增量式计算;然后,在邻域粒化增量式计算的基础上给出邻域粒化条件熵的增量式更新方法,并基于该更新机制提出对应的增量式属性约简算法;最后,通过实验分析表明所提出算法对于数值型数据的增量式属性约简具有更高的有效性和优越性.

    Abstract:

    Incremental attribute reduction is an important data mining method for dynamic data. The incremental attribute reduction algorithms proposed at present are mostly based on discrete data construction, but the related study for numeric data is few. Therefore, an incremental attribute reduction algorithm for object constantly increasing in numeric information system is presented. Firstly, a hierarchical neighborhood computing method is established in numeric information system, and the incremental computing of neighborhood granulation based on this method is proposed. Then, on the basis of neighborhood granulation incremental computing, the incremental updating method of neighborhood granulation conditional entropy is given, and the corresponding incremental attribute reduction algorithm is proposed on account of this updating mechanism. Finally, experimental analysis shows that the proposed algorithm has higher effectiveness and superiority for the incremental attribute reduction of numerical data.

    参考文献
    相似文献
    引证文献
引用本文

赵小龙,杨燕.基于邻域粒化条件熵的增量式属性约简算法[J].控制与决策,2019,34(10):2061-2072

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-29
  • 出版日期:
文章二维码