城市交叉口车辆速度与交通信号协同优化控制
CSTR:
作者:
作者单位:

(1. 大连理工大学控制科学与工程学院,辽宁大连116024;2. 东北大学流程工业综合自动化国家重点实验室,沈阳110819;3. 东北大学秦皇岛分校控制工程学院,河北秦皇岛066004)

作者简介:

通讯作者:

E-mail: geguo@yeah.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61573077);国家自然科学基金重点项目(U1808205).


Joint optimization of vehicle speed and traffic signals at a signalized intersection
Author:
Affiliation:

(1. School of Control Science and Engineering,Dalian University of Technology,Dalian116024,China;2. State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang110819,China;3. School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao066004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了降低城市交通中的行车延误与燃油消耗,针对人类驾驶车辆与自动驾驶车辆混合交通环境,提出一种基于交通信息物理系统(TCPS)的车辆速度与交通信号协同优化控制方法.首先,综合考虑路口交通信号、人类驾驶车辆、自动驾驶车辆三者之间的相互影响,设计一种适用于自动驾驶车辆与人类驾驶车辆混合组队特性的过路口速度规划模型;其次,针对车辆速度规划单一应用时的局限性,即无法减少车辆路口通行延误且易出现无解情况,提出一种双目标协同优化模型,能够综合考虑车辆速度规划与路口交通信号控制,同时降低车辆燃油消耗与路口平均延误.由于双目标优化问题求解的复杂性,设计一种遗传算法-粒子群算法混合求解策略.基于SUMO的仿真实验验证了所提出方法的有效性.

    Abstract:

    For the reducing of traffic delay and fuel consumption in urban traffic, a joint optimization method of vehicle speed and traffic signals based on transportation cyber physical systems(TCPS) is proposed for the mixed traffic environment of human-driven vehicles and autonomous vehicles. Firstly, considering the interaction among traffic signals, human-driven vehicles and autonomous vehicles, a speed planning model is developed suitable for the mixed group of human-driven vehicles and autonomous vehicles. Then, aiming at the limitation of vehicle speed planning in application, i.e., unable to reduce the vehicle delay and easy to occur no solution phenomenon, a bi-objective optimization model is proposed. Vehicle speed planning and traffic signal control are comprehensively integrated to meet the simultaneous reduction of vehicle fuel consumption and delay. For the complexity of the problem, a hybrid intelligent algorithm merging the genetic algorithm and the particle swarm optimization algorithm is designed. Finally, simulation experiments based on SUMO show the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

王云鹏,郭戈.城市交叉口车辆速度与交通信号协同优化控制[J].控制与决策,2019,34(11):2397-2406

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-10-30
  • 出版日期:
文章二维码