求解约束优化问题的改进自适应mu约束处理技术
CSTR:
作者:
作者单位:

(华北电力大学电气与电子工程学院,河北保定071003)

作者简介:

通讯作者:

E-mail: imyaoran@163.com.

中图分类号:

TP301.6

基金项目:

国家自然科学基金项目(51577068);中央高校基本科研业务费专项资金项目(2018ZD01).


Improved adaptive mu-constraint handling technique for solving constrained optimization problems
Author:
Affiliation:

(School of Electrical and Electronic Engineering,North China Electric Power University,Baoding071003,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前的约束处理技术存在易陷入局部最优解、难以满足等式约束和多控制参数的问题,在mu约束处理技术的基础上,以梯度下降法和多目标拥挤距离为理论依据,设计反映种群约束违反度分布信息的omega参数,它可以自适应地调节约束违反度阈值mu的松弛进而有效地解决约束问题.此外,改进了mu阈值比较准则以提高种群的多样性.经对CEC2017的标准约束优化问题(Constraint optimization problems,COP)进行求解,并与其他先进算法相比较,结果表明,改进的mu约束处理技术能够高效地处理含等式约束的COP.

    Abstract:

    To solve the problems existing in the current constraint handling techniques, where it's easy to fall into the local optimal solutions, difficult to satisfy the equality constraints and there are also multiple control parameters, the parameter omega is designed, based on the gradient descent method and multi-objective crowding-distance theory. In this paper, omega is a reflection of population constraint violation degree distribution information, which can adaptively adjust the relaxation of the constraint violation threshold mu to solve the constrained problem accurately. In addition, the mu threshold comparison criteria have been improved to increase population diversity. After the solutions of the standard constrained optimization problems (COP) of CEC2017, we compare the results with other advanced algorithms. And the comparison shows that the improved mu-constraint handling techniques can deal with complex equation constraints efficiently.

    参考文献
    相似文献
    引证文献
引用本文

徐玉琴,姚然,李鹏.求解约束优化问题的改进自适应mu约束处理技术[J].控制与决策,2019,34(12):2611-2618

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-12-04
  • 出版日期:
文章二维码