基于卷积神经网络的层级化智能故障诊断算法
CSTR:
作者:
作者单位:

(1. 海军航空大学青岛校区航空仪电控制工程与指挥系,山东青岛266041;2. 海军潜艇学院航海观通系,山东青岛266199)

作者简介:

通讯作者:

E-mail: yulu_china@163.com.

中图分类号:

TP206

基金项目:

国家自然科学基金项目(51505491);航空科学基金项目(20165853040).


A hierarchical intelligent fault diagnosis algorithm based on convolutional neural network
Author:
Affiliation:

(1. Department of Electrical Control and Command of Aviation Instrument,Qingdao Branch of Naval Aviation University,Qingdao266041,China;2. Department of Navigation and Communication,Naval Submarine Academy,Qingdao266199,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统智能故障诊断算法需要依赖人工特征提取和专家知识,而旋转机械设备复杂的工作环境和工况使得传统算法在实际应用中缺乏良好的自适应性和泛化性.针对以上问题,提出基于卷积神经网络(Convolutional neural network,CNN)的层级化故障诊断算法(CNN based hierarchical fault diagnosis,CNN-HFD).首先,将原始振动信号进行分段预处理,以实现数据扩容;然后,分别根据故障类型和故障程度设计多个卷积神经网络,并将原始振动数据以某一时间步进行分割,作为卷积神经网络的输入进行训练;最后,将待识别信号送入CNN-HFD模型,经过分层故障诊断,在末端卷积神经网络输出相应故障类别和程度.通过滚动轴承振动数据库的实验表明,所提出的算法不仅具有高达99.5%以上的故障识别率,而且在负载发生变化时依然可以保持高达97%以上的故障识别率,具有较好的鲁棒性和泛化性能.

    Abstract:

    Traditional intelligent fault diagnosis methods largely depend on manual feature extraction and expert knowledge. However, complex working conditions of rotatory machinery make traditional fault diagnosis lack adaptivity and generalization. Aiming to solve the problems mentioned above, a novel CNN-based hierarchical fault diagnosis algorithm called CNN-HFD is proposed. Firstly, raw temporal vibration signals are segmented to enlarge samples. Then, several simple CNN networks are constructed according to fault categories and severities. Training samples divided by a certain time-step are sent to the CNN. Finally, signals to be identified are utilized as the input of the CNN-HFD. After hierarchical analysis, the fault category and fault severity are output at the end of the model. Experiments on rolling bearing datasets demonstrate that the proposed method can not only achieve 99.5% fault recognition, but also keep a 97% accuracy under variable loads, which verifies its good robustness and generalization.

    参考文献
    相似文献
    引证文献
引用本文

曲建岭,余路,袁涛,等.基于卷积神经网络的层级化智能故障诊断算法[J].控制与决策,2019,34(12):2619-2626

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-12-04
  • 出版日期:
文章二维码