基于多行为的移动机器人路径规划
CSTR:
作者:
作者单位:

(1. 燕山大学工业计算机控制工程河北省重点实验室,河北秦皇岛066004;2. 天津电气科学研究院,天津300000)

作者简介:

通讯作者:

E-mail: 1096224481@qq.com.

中图分类号:

TP242

基金项目:

河北省自然科学基金项目(F2016203249);河北省青年基金项目(E2018203162).


Mobile robot path planning based on multi-behaviours
Author:
Affiliation:

(1. Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University, Qinhuangdao066004,China;2. Tianjin Research Institute of Electric Science,Tianjin300000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器人由当前点向目标点运动的过程中,所处环境经常为动态变化且未知的,这使得传统的路径规划算法对于移动机器人避障过程很难建立精确的数学模型.为此,针对环境信息完全未知的情况,为移动机器人设计一种基于模糊控制思想的多行为局部路径规划方法.该方法通过对各种行为之间进行适时合理的切换,以保证机器人安全迅速地躲避静态和动态障碍物,并利用改进的人工势场法实现对变速目标点的追踪.对于模糊避障中常见的U型陷阱问题,提出一种边界追踪的陷阱逃脱策略,使得机器人成功解除死锁状态.另外,设计一个速度模糊控制器,实现了机器人的智能行驶.最后,基于Matlab平台的仿真结果验证了所提出算法的有效性和实时性,与A*势场法的对比结果更突出了该算法的可行性.

    Abstract:

    When the robot moves from the current point to the target point, the environment is often dynamic and unknown, which makes it difficult for the traditional path planning algorithm to establish an accurate mathematical model for the mobile robot obstacle avoidance process. Aiming at the situation that the environment information is completely unknown, a multi-behaviour local path planning method based on fuzzy control is designed for the mobile robot. The method ensures that the robot avoids static and dynamic obstacles safely and promptly by switching various behaviours timely and reasonably. The improved artificial potential field method is used to track the variable speed target point. To deal with the common obstacle avoidance U-trap problem, a trap escaping strategy of the boundary tracking is proposed, which makes the robot successfully lift the deadlock state. In addition, a speed fuzzy controller is designed to realize the robot's intelligent driving. Finally, the simulation results based on the Matlab platform verify the effectiveness and real-time performance of the proposed algorithm. Compared with the A* potential field method, the proposed algorithm is more feasible.

    参考文献
    相似文献
    引证文献
引用本文

魏立新,吴绍坤,孙浩,等.基于多行为的移动机器人路径规划[J].控制与决策,2019,34(12):2721-2726

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-12-04
  • 出版日期:
文章二维码