不确定离散时间系统的有限时间预见跟踪控制
作者:
作者单位:

湖北经济学院

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:


Finite-time preview tracking control for uncertain discrete-time systems
Author:
Affiliation:

Hubei University of Economics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文研究了一类不确定离散时间系统的有限时间鲁棒预见控制问题. 与以往对误差信号和系统方程取差分不同, 本文通过引入辅助变量, 并用系统状态向量及输入向量与相应辅助变量之差代替通常的状态差分, 避免了对时变的系数矩阵取差分, 使得扩大误差系统的构造成为可能. 另外, 本文推导的扩大误差系统不再包含误差向量, 这不仅降低系统的阶数而且推广了适用对象. 针对所求得的不确定系统的扩大误差系统, 分别引入状态反馈和静态输出反馈, 并利用Lyapunov函数方法, 导出了闭环系统渐近稳定的充分条件. 该条件可以通过求解一个LMI问题而实现. 所得控制器回到原系统就得到带有预见作用的预见控制器. 数值仿真表明了本文结果的有效性.

    Abstract:

    The problem of finite-time robust preview control is proposed for a class of uncertain discrete-time systems. It is different from the difference of error signal and system equation. By introducing auxiliary variables, we use the difference between the system state variables, input variables, and the corresponding auxiliary variables, instead of the usual difference between system states. This makes it possible to construct an augmented error system. In addition, the augmented error system derived no longer contains error vector, which not only reduces the order of the system, but also extends the applicable object. For the augmented error system, the state feedback and output feedback are introduced, receptively, and based on the Lyapunov stability theory, sufficient conditions are derived for the robust asymptotic stability of the closed-loop systems. The conditions can be realized by solving an LMI problem. The controller returns to the original system, the preview controller is obtained. The numerical simulation examples also illustrate the effectiveness of the results in the paper.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-31
  • 最后修改日期:2020-10-15
  • 录用日期:2020-11-03
  • 在线发布日期:
  • 出版日期: