基于统一资源编码的成像卫星联合任务规划算法框架
作者:
作者单位:

1.国防科技大学信息通信学院试验训练基地;2.国防科技大学系统工程学院

作者简介:

通讯作者:

中图分类号:

TP79

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A united mission planning algorithm framework based on uniform resource encoding for imaging satellites
Author:
Affiliation:

1.College of Information and Communication, National University of Defense Technology;2.College of Systems Engineering, National University of Defense Technology

Fund Project:

National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于大量的卫星和地面站资源,随着观测任务与日俱增,如何高效安排对应的一体化成像数传活动成为了提升卫星管控效能的关键。在综合考虑实际约束的基础上,文章建立了数学模型来详细描述成像卫星联合任务规划问题,通过采用统一资源编码的思想设计了一种简单且易于理解的个体表示方法,并利用任务有效执行期的潜在冲突关系提出了相互冲突任务集的概念来降低问题求解的时间复杂度,由此生成了相应的算法框架。最后运用多个测试实例验证了该框架的有效性,同时突出了其面对大规模算例时可在有限时间内获得高质量解的能力。

    Abstract:

    For a large number of earth observation satellite as well as ground station resources, how to effectively arrange the integrated imaging and data transmission activities plays a crucial role in improving the satellite management efficiency with the increasing quantity of observation missions. Based on comprehensive consideration of practical constraints, a mathematical model is established to describe the imaging satellite united mission planning problem in detail. A simple as well as comprehensible individual representation method is designed by adopting the idea of uniform resource encoding, and the conception of conflicting mission set is proposed by utilizing the potential conflict relationship of the effective execution period for each mission to reduce the time complexity of solving this problem, thereby generating the corresponding algorithm framework. Finally, the validity of the algorithm framework is demonstrated by employing the test instances, which also shows its ability to obtain high-quality solutions within a limited time period for the large scale optimization instances.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-09
  • 最后修改日期:2021-03-13
  • 录用日期:2021-03-16
  • 在线发布日期:
  • 出版日期: