基于多点加点准则的代理模型辅助社会学习微粒群算法
CSTR:
作者:
作者单位:

(1.太原科技大学机械工程学院,太原030024;2.山东女子学院数据科学与计算机学院,济南250300;3.太原科技大学计算机科学与技术学院,太原030024;4.中北大学计算机与控制工程学院,太原030051)

作者简介:

通讯作者:

E-mail: chaoli.sun@tyust.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61472269, 61403272);山西省自然科学基金项目(201601D021083);山东女子学院高水平科研项目(2018GSPSJ07).


Similarity-based multipoint infill criterion for surrogate-assisted social learning particle swarm optimization
Author:
Affiliation:

(1. College of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan030024,China;2. School of Data and Computer Science,Shandong Women's University,Jinan250300,China;3. Department of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan030024,China;4. School of Computer Science and Control Engineering,North University of China,Taiyuan030051,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    代理模型辅助的进化算法目前已广泛用于解决计算代价高的复杂优化问题.然而,大多数现有的代理辅助进化算法只适用于低维问题且仍然需要数千次昂贵的真实适应值评价来获得较优解.为此,提出一种基于多点加点准则的代理模型辅助的社会学习微粒群算法,用于解决高维问题并使用更少的评价次数.该算法选用高斯过程构造代理模型,以社会学习微粒群算法(SLPSO)作为优化器,提出一种基于相似度的多点加点规则(SMIC),用于选取需要使用原函数进行实际计算的候选解.在仿真实验中将该方法与现有研究成果进行比较,通过对50维sim100维的基准函数的测试,验证了所提出算法在有限的适应值计算次数下拥有更好的寻优性能,尤其是在高维优化问题上拥有更显著的优势.

    Abstract:

    The research on surrogate-assisted evolutionary algorithms has attracted increasing attention for time or resource consuming optimization problems over the past decades. However, most existing surrogate-assisted evolutionary algorithms still require thousands of expensive function evaluations to obtain acceptable solutions and are only applied to low-dimensional problems. Therefore, a surrogate-assisted optimization, called SMIC-SLPSO (Similarity-based multipoint infill criterion for surrogate-assisted social learning particle swarm optimization), is proposed for high dimensional problems with less computation. In the proposed algorithm, using Gaussian process as the surrogate model and considering SLPSO algorithm as an optimizer, a similarity-based multipoint infill criterion (SMIC) is proposed for searching the solutions to re-evaluation by using the original expensive problems. Simulation of experiments comparing the proposed algorithm with a few state-of-the-art surrogate-assisted evolutionary algorithms on benchmark functions from 50 to 100 dimension is carried out. The results proposed algorithm is able to achieve better or competitive solutions with a limited budget of exact evaluations, especially on higher dimensional problems.

    参考文献
    相似文献
    引证文献
引用本文

田杰,孙超利,谭瑛,等.基于多点加点准则的代理模型辅助社会学习微粒群算法[J].控制与决策,2020,35(1):131-138

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-12-27
  • 出版日期:
文章二维码