面向装配的多agent排产模型研究
CSTR:
作者:
作者单位:

(1. 汕头大学工学院,广东汕头515063;2. 普渡大学印第安纳波利斯分校工程技术学院,印第安纳波利斯46202;3.辽宁轻工职业学院机电工程系,辽宁大连116110)

作者简介:

通讯作者:

E-mail: zhangxw@stu.edu.cn.

中图分类号:

TP29

基金项目:

国家自然科学基金项目(51405279).


Assembly-oriented planning and scheduling framework based on multi-agent
Author:
Affiliation:

(1. College of Engineering,Shantou University,Shantou 515063,China;2. School of Engineering and Technology,Indiana University Purdue University Indianapolis,Indianapolis46202,USA;3. Department of Mechanical Engnieering, Liaoning Uocational College Light Industry, Dalian 116110,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    拖期罚金带来的成本问题使中小规模离散制造企业在竞争中面临巨大压力.为此,采用多agent技术设计面向装配的三层排产框架模型;利用多agent的自治和协同,结合经验规则,将复杂的大规模排产逐层分解,转化为可用算法优化的子问题,再自底向上归并更新,迭代寻优完成生产排产,并可依计划执行情况进行动态调度.以合作企业凹印机历史订单数据进行排产仿真,结果表明,通过对设备空闲时间分布的有效管理,此三层模型能够有效解决订单拖期问题,对中小企业的成本控制具有重要意义.

    Abstract:

    To solve the cost burden caused by delivery tardiness for small-and-medium-sized discrete manufacturing enterprises, an assembly-oriented three-layer planning and scheduling framework is proposed based on the multi-agent technology. Taking the advantage of the autonomy and coordination of multi-agent, and combining with heuristic rules, this framework makes the complex large-scale production planning decomposed into more easily solvable sub-problems with optimization algorithms. The resulted plans of every layer are updated iteratively based on the down layer optimization till the near-optimal solution is achieved. Moreover, with the planning execution information, dynamic scheduling can also be addressed within this framework. The simulation with the historical data of gravure printing machine orders demonstrates the capabilities of the scheme for the tardiness penalty problem through the effective control of the idle-time distribution.

    参考文献
    相似文献
    引证文献
引用本文

范颖晖,张兴伟,王亚会.面向装配的多agent排产模型研究[J].控制与决策,2020,35(2):403-409

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-18
  • 出版日期:
文章二维码