基于联合子空间模型的模拟信息转换器研究进展
CSTR:
作者:
作者单位:

(1. 中国科学院沈阳自动化研究所网络化控制系统重点实验室,沈阳110016;2. 中国科学院机器人与智能制造创新研究院,沈阳110169;3. 中国科学院大学,北京100049)

作者简介:

通讯作者:

E-mail: liutiefeng@sia.cn.

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2017YFA0700304).


Research advances on analog-to-information converter based on union of subspaces model
Author:
Affiliation:

(1. Key Laboratory of Networked Control Systems,Shenyang Institute of Automation Chinese Academy of Sciences,Shenyang110016,China;2. Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang110169, China;3. University of Chinese Academy of Sciences,Beijing 100049,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    依据Shannon采样定理的模拟-数字转换器越来越难以满足对高频、宽频信号的采样需求,为实现低速 率采样同时缓解数据传输、存储及处理的压力,基于亚Nyquist采样的模拟信息转换器(analog-to-information convertor,AIC)成为研究热点.首先概述压缩感知理论、单向量空间和联合子空间(union of subspaces,UoS)采样理论,着重总结和对比几种符合UoS模型信号的AIC采样架构及恢复算法,进一步提出一种多天线采样系统架构及基于子空间分解的增强型重构方法,最后展望了AIC未来的研究方向.

    Abstract:

    Traditional analog-to-digital convertors(ADCs) based on the Shannon sampling theorem can hardly satisfy the sampling requirements for high-frequency and wideband signals. For the purpose of sampling rate reducing, data transmission, storage and process relaxing, new analog-to-information convertors(AICs) based on sub-Nyquist sampling methods have drawn intensive attentions in past few years. Compressed sensing (CS) theory, single vector space (SVS) and union of subspaces(UoS) sampling theory are firstly introduced. Based on the UoS signal model, an emphasis on AIC sampling architectures and recovery algorithms are summarized and compared afterwards. Then, a multiple-antenna sub-Nyquist sampling architecture and its corresponding augmented recovery method based on the subspace decomposition are proposed. Finally, future research directions are given.

    参考文献
    相似文献
    引证文献
引用本文

刘铁锋,杨光,宫铁瑞,等.基于联合子空间模型的模拟信息转换器研究进展[J].控制与决策,2020,35(3):513-522

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-02-22
  • 出版日期:
文章二维码