一类非线性状态时滞系统的基于采样控制器的渐近稳定问题
CSTR:
作者:
作者单位:

(1. 东南大学自动化学院,南京210096;2. 东南大学复杂工程系统测量与控制教育部重点实验室,南京210096; 3. 杭州电子科技大学机械工程学院,杭州310018)

作者简介:

通讯作者:

E-mail: panwangqf@126.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61473079);江苏省“六大人才高峰”高层次人才计划项目(RJFW-001);浙江省自然科学基金项目(LY16E050003).


Asymptotic stability for a class of nonlinear systems with state time-delay based on sampled-data controller
Author:
Affiliation:

(1. School of Automation,Southeast University,Nanjing210096,China;2. Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education,Southeast University,Nanjing210096,China;3. School of Mechanical Engineering, Hangzhou Dianzi University,Hangzhou310018,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类含有状态时滞的非线性系统,利用采样控制方法研究其渐近稳定问题.解决这一问题的关键在于对系统时滞的处理,以及对由于采样方法而产生的状态增长误差进行估计.由于所考虑的时滞是常时滞,可以利用分割方法对系统时滞进行分割,将时滞划分成与采样时间长度相同的数个时间区间,并基于这种分割,通过数学归纳法对系统状态增长误差进行估计.通过坐标变换引入一个比例增益压制系统的非线性项,然后设计含有比例增益的状态采样观测器和采样控制器,结合非线性时滞系统的Lyapunov泛函方法分析闭环系统的稳定性,最终确定比例增益和采样时间需要满足的条件,以保证闭环系统的渐近稳定性.最后通过数值例子表明所用研究方法以及所得研究结果是有效的.

    Abstract:

    This paper studies the problem of asymptotic stability for a class of nonlinear systems with state time-delay by using sampled-data control method. The key technology to solve this problem is the dispose of time-delay, as well as the error estimate of state growth which is resulted by using sampled-data methods. Since the time delay is a constant, it can be divided into several intervals which have the same length as the sampling period. Based on this division, a mathematical induction approach is proposed to estimate the state growth. A scaling gain is introduced by coordinate transformation to deal with the nonlinear terms of the system, and then the state observer and controller are designed, which contain the scaling gain via the sampled-data control method. Combined with the Lyapunov functional method of nonlinear time-delay systems, the stability of the closed-loop system is analyzed, and finally the appropriate scaling gain and sampling period are determined to guarantee the asymptotic stability of the closed-loop system. The numerical example verifies the availability of the method and the obtained results.

    参考文献
    相似文献
    引证文献
引用本文

王攀,柴琳,费树岷,等.一类非线性状态时滞系统的基于采样控制器的渐近稳定问题[J].控制与决策,2020,35(5):1143-1150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-03-25
  • 出版日期:
文章二维码