融合多目标与速度控制的AGV全局路径规划
CSTR:
作者:
作者单位:

(1. 大连海事大学交通运输工程学院,辽宁大连116026;2. 东北农业大学电气与信息学院,哈尔滨150030)

作者简介:

通讯作者:

E-mail: jmj@dlmu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(71572022,71202108,71302085).


AGV global path planning integrating with the control of multi-objectives and speed
Author:
Affiliation:

(1. School of Transportation Engineering,Dalian Maritime University,Dalian116026,China;2. School of Electrical and Information,Northeast Agricultural University,Harbin150030,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升AGV工作效率并改善其躲避障碍物的执行能力,提出在静态与动态环境下的全局路径规划方法——多目标与速度控制法.在静态环境下,以路径最短与平滑度最大建立路径规划的多目标数学模型,采用所提出的改进算法求解并筛选,得到AGV的行驶路径;在动态环境中,根据障碍物的运动情况,提出感应转向算法,使AGV合理躲避障碍物.结合两种环境下的转向特点,设定AGV速度控制规则,应用于静态与动态环境下的转向过程,确保AGV能够行驶得更加平稳与快速.仿真实验表明,所提出方法能够确保AGV在两种环境下自由躲避和灵活转向,提升行驶速度,提高工作效率;与常规算法对比,改进算法的求解效果在时间和精度上都显著提高.

    Abstract:

    To improve the efficiency of atuo mated guided vehicle(AGV) and its executive capability to avoid obstacles, a global path planning method, that is, the method of controlling multiple objectives and speed, in both static and dynamic environments is proposed. In static environment, a multi-objective mathematical model for path planning is established based on the shortest path and maximum smoothness. The proposed improved algorithm is adopted for solution and selection, and the travelling path for AGV is obtained. In dynamic environment, according to the movement of the moving obstacles, the induction steering algorithm is raised, which makes the AGV avoid obstacles properly. On the basis of steering features in both static and dynamic environments, the rule of controlling AGV speed is assumed and applied in the process of sheering in both kinds of environment, to ensure that the AGV can run more steadily and smoothly with a high speed. According to the simulation experiment, the proposed method can guarantee that the AGV can avoid obstacles in a free way in both static and dynamic environments, and thus, both its speed and efficiency are improved. While compared with the conventional algorithm, the improved algorithm has a significant improvement in terms of time and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

郭兴海,计明军,张卫丹.融合多目标与速度控制的AGV全局路径规划[J].控制与决策,2020,35(6):1369-1376

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-15
  • 出版日期:
文章二维码