基于延迟时间理论的n中取k系统检测区间模型
CSTR:
作者:
作者单位:

(1. 北京科技大学东凌经济管理学院,北京100083;2. 东北大学秦皇岛分校管理学院,河北秦皇岛066004)

作者简介:

通讯作者:

E-mail: liuxj@ustb.edu.cn.

中图分类号:

TP274

基金项目:

国家自然科学基金项目(71601019,71701038);中央高校基本科研业务费专项资金项目(FRF-BD-18-009A,FRF-TP-18-006A2).


Delay-time-based inspection model for k-out-of-n systems
Author:
Affiliation:

(1. Donlinks School of Economics and Management,University of Science and Technology Beijing,Beijing100083,China;2. School of Management,Northeastern University at Qinhuangdao,Qinhuangdao066004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    延迟时间理论广泛应用于系统维修领域,能够更为细致和准确地反映系统的运行状态.不同于一般维修理论只用一个阶段描述系统的故障过程,该理论将系统的故障过程分为两个阶段:正常阶段和缺陷运行阶段.系统部件的状态有正常、缺陷和故障3种情况.延迟时间理论主要应用于单部件系统和串联系统的维修和检测,目前尚未应用于n中取k系统.对此,运用延迟时间理论确定n中取k系统的最优维修检测区间,分别针对两种情况进行分析:一种是系统中部件的初始缺陷发生时间服从指数分布的情况,一种是其服从非指数分布的情况.建立单位时间维修费用模型和设计仿真过程,以单位时间维修费用最小为目标进行优化,求解系统的最优维修检测区间.最后通过数值案例表明所提出方法的有效性.

    Abstract:

    The delay-time concept has been extensively applied in the field of maintenance. Unlike traditional maintenance policy only considers one-stage system failure process, the delay-time concept defines a two-stage system failure process: the normal stage from new to an initial defect and the following delay-time stage from this defective point to failure. Previous works using delay-time concept have mainly focused on single-component systems and multi-component systems with a series configuration, however, have not been applied to k-out-of-n systems. Therefore, this paper proposes a delay-time-based inspection model for k-out-of-n systems and study the optimal inspection interval that minimizes the long-term expected cost per unit time. Both exponential and non-exponential distributions for the time-to-defect of the components are considered. Numerical examples are presented to illustrate the effectiveness of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文

刘学娟,赵斐.基于延迟时间理论的n中取k系统检测区间模型[J].控制与决策,2020,35(6):1469-1475

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-15
  • 出版日期:
文章二维码