基于符号距离和交叉熵的概率犹豫模糊多属性决策方法
CSTR:
作者:
作者单位:

(1. 郑州大学管理工程学院,郑州450001;2.郑州大学商学院,郑州450001)

作者简介:

通讯作者:

E-mail: zzyuminliu@126.com.

中图分类号:

C934

基金项目:

国家自然科学基金项目(71672182,71711540309,U1604262).


Probabilistic hesitant fuzzy multi-attribute decision method based on signed distance and cross entropy
Author:
Affiliation:

(1. School of Management Engineering,Zhengzhou University,Zhengzhou 450001,China;2. Business of School,Zhengzhou University,Zhengzhou450001,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对概率犹豫模糊环境下属性权重完全未知的多属性决策问题,提出基于符号距离和交叉熵的多属性决策方法.首先,定义用于测量决策者犹豫程度的3种概率犹豫模糊元的犹豫度:数值犹豫度,信息不完全度和总犹豫度,基于3种犹豫度提出概率犹豫模糊符号距离;然后,为了避免人为添加元素,定义调和概率犹豫模糊元,并结合信息不完全度提出概率犹豫模糊元的交叉熵;最后,根据概率犹豫模糊元的符号距离和交叉熵构建多属性决策模型,并通过算例验证了该模型的有效性和合理性.

    Abstract:

    A multi-attribute decision making method based on signed distance and cross entropy is proposed for multi-attribute decision making problems in which the attribute weights are completely unknown under the probabilistic hesitant fuzzy environment. Firstly, the three kinds hesitation degree of probability hesitant fuzzy elements used to measure the degree of hesitancy of decision makers is proposed: Numerical hesitation degree, information incomplete degree and total hesitation degree. The probability hesitant fuzzy signed distance is proposed based on three hesitation degrees. Then, in order to avoid artificially adding elements, the adjusted probabilistic hesitant fuzzy element is defined, it combines with the incomplete degree of information to propose the cross entropy of the probabilistic hesitant fuzzy element. Finally, the multi-attribute decision model is constructed based on the signed distance and cross entropy of the probabilistic hesitant fuzzy element, and the effectiveness and rationality of the model are illustrated by an example.

    参考文献
    相似文献
    引证文献
引用本文

朱峰,徐济超,刘玉敏,等.基于符号距离和交叉熵的概率犹豫模糊多属性决策方法[J].控制与决策,2020,35(8):1977-1986

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-06-08
  • 出版日期:
文章二维码