关于布尔控制网络的能观性和能检性的研究现状
作者:
作者单位:

(山东大学数学学院,济南250100)

通讯作者:

E-mail: fengjune@sdu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61773371,61877036);山东省自然科学基金项目(ZR2019MF002).


Recent development on observability and detectability of Boolean control networks
Author:
Affiliation:

(School of Mathematics,Shandong University,Ji'nan250100,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [79]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    布尔(控制)网络是模拟基因调控网络有效的数学模型.该模型将细胞内(或特定一个基因组内)基因与基因之间的相互作用关系量化,系统的状态和函数直接反应基因表达、复制、转录等生命活动,在新的数学工具矩阵半张量积的帮助下,取得了许多优秀成果.近些年,国内外病毒疫情频发,对全球各个方面造成巨大的冲击和损失,病毒检测技术是战“疫”中非常重要的一个环节.鉴于此,总结近年来矩阵半张量积在布尔(控制)网络的能观性和能检性方面取得的一些成果,以便更多学者关注这类问题和方法.首先回顾能观性和能检性的发展历程;然后,从理论角度分析并用网络图呈现4种能观性与3种能检性之间的关系,整理在布尔网络和布尔控制网络中相关的一些重要成果,包括状态反馈、输出反馈、含干扰、含切换等多种情形;最后通过简述能观性和能检性的应用现状展望其未来发展.

    Abstract:

    Boolean(control) network is an effective mathematical model of simulating gene regulation networks. By quantifying the interactions among genes within cells or a particular genome and related variables, the expression, replication, transcription and other activities of genes can be well reflected by a Boolean network model. Via a novel tool, semi-tensor product, a lot of excellent results on Boolean networks are obtained. In recent years, there have been frequent outbreaks of virus at home and abroad, causing great impact and loss to all aspects of the world. Virus detection technology plays a key role against virus diseases. In view of this, the paper mainly summarizes some recent achievements on observability and detectabitliy of Boolean control networks via semi-tensor product to attract more scholars' attention to such problems and methods. Firstly, the developments of observability and detectabitliy are reviewed. Then, from a theoretical point of view, the relationship among four types of observability and three types of detectability is shown by a network diagram. Moreover, some important works, including state feedback, output feedback, disturbance and so on, are introduced. Finally, following an overview of some applications of observability and detectability, future development is prospected.

    参考文献
    [1]Kauffman S A.Metabolic stability and epigenesis in randomly constructed genetic nets[J].Journal of Theoretical Biology, 1969, 22(3): 437-467.
    [2] Akutsu T, Miyano S, Kuhara S.Identification of genetic networks from a small number of gene expression patterns under the Boolean network model[C].Proceedings Pacific Symposium on Biocomputing.Hawaii: World Scientific, 1999, 4: 17-28.
    [3] Albert R, Barabasi A.Dynamics of complex systems: Scaling laws for the period of Boolean networks[J].Physical Review Letters, 2000, 84(24): 5660-5663.
    [4] Shmulevich I, Dougherty E R, Kim S, et al.Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks[J].Bioinformatics, 2002, 18(2): 261-274.
    [5] Shmulevich I, Dougherty E R, Zhang W.From Boolean to probabilistic Boolean networks as models of genetic regulatory networks[J].Proceedings of the IEEE, 2002, 90(11): 1778-1792.
    [6] Cheng D Z, Qi H S.A linear representation of dynamics of Boolean networks[J].IEEE Transactions on Automatic Control, 2010, 55(10): 2251-2258.
    [7] Cheng D Z, Qi H S, Li Z.Analysis and control of Boolean networks: A semi-tensor product approach[M].London: Springer, 2011: 1-101.
    [8] Cheng D Z, Qi H S, Zhao Y.An introduction to semi-tensor product of matrices and its applications[M].London: Springer, 2012: 1-101.
    [9] 钱学森, 宋健.工程控制论[M].北京: 科学出版社, 1983: 681-744. (Qian X S, Song J.Engineering cybernetics[M].Beijing: Science Press, 1983: 681-744.)
    [10] Laschov D, Margaliot M.A maximum principle for single-input Boolean control[J].IEEE Transactions on Automatic Control, 2011, 56(4): 913-917.
    [11] Bof N, Fornasini E, Valcher M E.Output feedback stabilization of Boolean control[J].Automatica, 2015, 57: 21-28.
    [12] Meng M, Xiao G X, Zhai C, et al.Controllability of Markovian jump Boolean control networks[J].Automatica, 2019, 106: 70-76.
    [13] 梅生伟, 刘锋, 薛安成.电力系统暂态分析中的半张量积方法[M].北京: 清华大学出版社, 2010: 1-313. (Mei S W, Liu F, Xue A C.A semi-tensor product approach to transient analysis of power systems[M].Beijing: Tsinghua University Press, 2010: 1-313.)
    [14] Li H T, Zhao G D, Guo P L, et al.Analysis and control of finite-value systems[M].London: Taylor & Francis Group CRC Press, 2018: 1-276.
    [15] 冯俊娥, 贾淼.混合值逻辑网络的集合稳定[J].控制与决策, 2019, 34(2): 269-273. (Feng J E, Jia M.Set stability of mix-valued logical networks[J].Control and Decision, 2019, 34(2): 269-273.)
    [16] 冯俊娥, 于永渊, 李海涛.受限布尔网络发展现状[J].控制与决策, 2018, 33(5): 960-968. (Feng J E, Yu Y Y, Li H T.Recent development of Boolean networks with constraints[J].Control and Decision, 2018, 33(5): 960-968.)
    [17] 程代展, 夏元清, 马宏宾, 等.矩阵代数、控制与博 弈[M].第2版: 北京: 北京理工大学出版社, 2018: 1-348. (Cheng D Z, Xia Y Q, Ma H B, et al.Matrix algebra, control and game theory[M].2nd ed.Beijing: Beijing Institute of Technology Press, 2018: 1-348.)
    [18] 于永渊, 冯俊娥, 潘金凤.有序势博弈及其在智能体无线网络中的应用[J].控制与决策, 2017, 32(3): 393-402. (Yu Y Y, Feng J E, Pan J F.Ordinal potential game and its application in agent wireless networks[J].Control and Decision, 2017, 32(3): 393-402.)
    [19] Xu X R, Hong Y G.Observability analysis and observer design for finite automata via matrix approach[J].IET Control Theory and Applications, 2013, 7(12): 1609-1615.
    [20] Yan Y Y, Chen Z Q, Liu Z X.Semi-tensor product approach to controllability and stabilizability of finite automata[J].Journal of Systems Engineering and Electronics, 2015, 26(1): 134-141.
    [21] Yan Y Y, Chen Z Q, Yue J M, et al.STP approach to model controlled automata with application to reachability analysis of DEDS[J].Asian Journal of Control, 2016, 18(6): 2027-2036.
    [22] Han X G, Chen Z Q.A matrix-based approach to verifying stability and synthesizing optimal stabilizing controllers for finite-state automata[J].Journal of the Franklin Institute, 2018, 355(17): 8642-8663.
    [23] Han X G, Chen Z Q, Liu Z X, et al.The detection and stabilisation of limit cycle for deterministic finite automata[J].International Journal of Control, 2018, 91(4): 874-886.
    [24] Xu X R, Hong Y G.Matrix approach to model matching of asynchronous sequential machines[J].IEEE Transactions on Automatic Control, 2013, 58(11): 2974-2979.
    [25] Wang B, Feng J E, Meng M.Matrix approach to model matching of composite asynchronous sequential machines[J].IET Control Theory and Applications, 2017, 11(13): 2122-2130.
    [26] Wang J J, Han X G, Chen Z Q, et al.Model matching of input/output asynchronous sequential machines based on the semi-tensor product of matrices[J].Future Generation Computer Systems, 2017, 83: 468-475.
    [27] Wang B, Feng J E, Li H T.Matrix approach to reachability of parallel interconnected asynchronous sequential machines[C].Proceedings of the 12th Asian Control Conference.Kitakyushu: IEEE, 2019: 1548-1553.
    [28] Wang B, Feng J E, Meng M.Model matching of switched asynchronous sequential machines via matrix approach[J].International Journal of Control, 2019, 92(10): 2430-2440.
    [29] Wang B, Feng J E.A matrix approach for the static correction problem of asynchronous sequential machines[J].International Journal of Control, Automation, and Systems, 2020, 18(2): 477-485.
    [30] Han X G, Chen Z Q, Su R.Synthesis of minimally restrictive optimal stability-enforcing supervisors for nondeterministic discrete event systems[J].Systems & Control Letters, 2019, 123: 33-39.
    [31] Wang B, Feng J E, Meng M.Matrix approach to detectability of discrete event systems[J].Journal of the Franklin Institute, 2019, 356(12): 6460-6477.
    [32] Zhang Z P, Chen Z Q, Han X G, et al.On the static output feedback stabilisation of discrete event dynamic systems based upon the approach of semi-tensor product of matrices[J].International Journal of Systems Science, 2019, 50(8): 1595-1608.
    [33] Cheng D Z, Qi H S.Controllability and observability of Boolean control networks[J].Automatica, 2009, 45(7): 1659-1667.
    [34] Zhao Y, Qi H S, Cheng D Z.Input-state incidence matrix of Boolean control networks & its applications[J].Systems and Control Letters, 2010, 59(12): 767-774.
    [35] Cheng D Z, Zhao Y.Identification of Boolean control networks[J].Automatica, 2011, 47(4): 702-710.
    [36] Fornasini E, Valcher M E.Observability, reconstructibility and state observers of Boolean control networks[J].IEEE Transactions on Automatic Control, 2013, 58(6): 1390-1401.
    [37] Wang B, Feng J E, Li H T, et al.On detectability of Boolean control networks[J].Nonlinear Analysis: Hybrid Systems, 2020, 36: 100859.
    [38] Kalman R E, Falb P L, Arbib M A.Topics in mathematical sytems theory[M].New York: McGraw Hill, 1969: 175-190.
    [39] Li F, Sun J T.Observability analysis of Boolean control networks with impulsive effects[J].IET Control Theory and Applications, 2011, 5(14): 1609-1616.
    [40] Zhang L J, Zhang K Z.Controllability and observability of Boolean control networks with time-variant delays in states[J].IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(9): 1478-1484.
    [41] Guo Y Q, Gui W H, Yang C H.Redefined observability matrix for Boolean networks and distinguishable partitions of state space[J].Automatica, 2018, 91: 316-319.
    [42] Yu Y Y, Wang B, Feng J E.Input observability of Boolean control networks[J].Neurocomputing, 2019, 333: 22-28.
    [43] Zhang K Z, Zhang L J.Observability of Boolean control networks: A unifited approach based on finite automata[J].IEEE Transactions on Automatic Control, 2016, 61(9): 2733-2738.
    [44] Zhang L Q, Feng J E, Yao J.Controllability and observability of switched Boolean control networks[J].IET Control Theory and Applications, 2012, 6(16): 2477-2484.
    [45] Meng M, Li B Y, Feng J E.Controllability and observability of singular Boolean control networks[J].Circuits, Systems, and Signal Processing, 2015, 34(4): 1233-1248.
    [46] Li Y L, Li J J, Ma Z M, et al.Controllability and observability of state---Dependent switched Boolean control networks with input constraints[J].Asian Journal of Control, 2019, 21(6): 2662-2673.
    [47] Cheng D Z, Li C X, He F H.Observability of Boolean networks via set controllability approach[J].Systems & Control Letters, 2018, 115: 22-25.
    [48] Wang Y H, Zhang X, Hao Y Q, et al.Robust controllability and observability of Boolean control networks[C].The 37th Chinese Control Conference.Wuhan: IEEE, 2018: 25-27.
    [49] Wang Y H, Zhang X, Hao Y Q.Robust controllability and observability of Boolean control networks under different disturbances[J].Mathematical Problem in Engineering, 2019: 1-9.
    [50] Zhu Q X, Liu Y, Lu J Q, et al.Observability of Boolean control networks[J].Science China: Information Sciences, 2018, 61(9): 092201.
    [51] Zhu Q X, Liu Y, Lu J Q, et al.Controllability and observability of Boolean control networks via sampled-data control[J].IEEE Transactions on Control of Network Systems, 2019, 6(4): 1291-1301.
    [52] Wu G S, Dai L Y, Liu Z M, et al.Online observability of Boolean Control Networks[EB/OL].2019, arXiv: 1903.07462.
    [53] Laschov D, Margaliot M, Even G.Observability of Boolean networks: A graph-theoretic approach[J].Automatica, 2013, 49(8): 2351-2362.
    [54] Wu Y H, Xu J X, Sun X M, et al.Observability of Boolean multiplex control networks[J].Scientific Reports, 2017, 7(1): 46495.
    [55] Li F F, Ho D W C.Observability of Boolean networks with redundant channels[J].IEEE Transactions on Circuits and Systems, 2019, DOI: 10.1109/TCSII.2019.2940238.
    [56] Li R, Yang M, Chu T G.Observability conditions of Boolean control networks[J].International Journal of Robust and Nonlinear Control, 2014, 24(17): 2711-2723.
    [57] Gao Z, Wang B, Feng J E, et al.A note on observability of switched Boolean control networks[C].2019 Chinese Control Conference.Piscataway: IEEE, 2019: 336-341.
    [58] Li T T, Wang B, Feng J E, et al.Observability of singular Boolean control networks[C].2019 Chinese Control Conference.Piscataway: IEEE, 2019: 439-447.
    [59] Yu Y Y, Meng M, Feng J E.Observability of Boolean networks via matrix equations[J].Automatica, 2020, 111: 108621.
    [60] Zhang K Z, Johansson K H.Efficient observability verification for large-scale Boolean control networks[C].The 37th Chinese Control Conference.Piscataway: IEEE, 2018: 560-568.
    [61] Cheng D Z, Qi H S, Liu T, et al.A note on observability of Boolean control networks[J].Systems & Control Letters, 2016, 87: 76-82.
    [62] Zhang K Z, Zhang L J, Xie L H.Finite automata approach to observability of switched Boolean control networks[J].Nonlinear Analysis: Hybrid Systems, 2016, 19: 186-197.
    [63] Guo Y Q.Observability of Boolean control networks using parallel extension and set reachability[J].IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6402-6408.
    [64] Fornasini E, Valcher M.Observability and reconstructibility of Boolean control networks[C].Proceedings of the 51st IEEE Conference on Decision and Control.Hawaii: IEEE, 2012: 2574-2580.
    [65] Zhang K Z, Zhang L J, Su R.A weighted pair graph representation for reconstructibility of Boolean control networks[J].Siam Journal on Control and Optimization, 2016, 54(6): 3040-3060.
    [66] Zhang K Z.Observability and reconstructibility of large-scale Boolean control networks via network aggregations[EB/OL].2017, arXiv:1704.03231.
    [67] Zhang Z H, Leifeld T, Zhang P.Reconstructibility analysis and observer design for Boolean control networks[J].IEEE Transactions on Control of Network Systems, 2020, 7(1): 516-528.
    [68] Guo Y Q, Wang P, Gui W H, et al.Set stability and set stabilization of Boolean control networks based on invariant subsets[J].Automatica, 2015, 61: 106-112.
    [69] Yu Y Y, Feng J E, Wang B, et al.Sampled-data controllability and stabilizability of Boolean control networks: Nonuniform sampling[J].Journal of the Franklin Institute, 2018, 355(12): 5324-5335.
    [70] Li F F, Tang Y.Set stabilization for switched Boolean control networks[J].Automatica, 2017, 78: 223-230.
    [71] Xu M X, Liu Y, Lou J G, et al.Set stabilization of probabilistic Boolean control networks: A sampled-data control approach[J].IEEE Transactions on Cybernetics, 2019: 1-8.
    [72] Xu X J, Liu Y S, Li H T, et al.Robust set stabilization of Boolean control networks with impulsive effects[J].Nonlinear Analysis: Modelling and Control, 2018, 23(4): 553-567.
    [73] Liu R J, Lu J Q, Zheng W X, et al.Output feedback control for set stabilization of Boolean control networks[J].IEEE Transactions on Neural Networks and Learning Systems, 2019: 1-11.
    [74] Liu R J, Lu J Q, Lou J G, et al.Set stabilization of Boolean networks under pinning control strategy[J].Neurocomputing, 2017, 260: 142-148.
    [75] Wang B, Feng J E.On detectability of probabilistic Boolean networks[J].Information Sciences, 2019, 483: 383-395.
    [76] Fornasini E, Valcher M E.Observability and reconstructibility of probabilistic Boolean networks[J].IEEE Control Systems Letters, 2020, 4(2): 319-324.
    [77] Faure A, Naldi A, Chaouiya C, et al.Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle[J].Bioinformatics, 2006, 22(14): 124-131.
    [78] Veliz-Cuba A, Stigler B.Boolean models can explain bistability in the lac operon[J].Journal of Computational Biology, 2011, 18(6): 783-794.
    [79] Kitano H.Computational systems biology[J].Nature, 2002, 420(6912): 206-210.}
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王彪,冯俊娥.关于布尔控制网络的能观性和能检性的研究现状[J].控制与决策,2020,35(9):2049-2058

复制
分享
文章指标
  • 点击次数:1476
  • 下载次数: 2135
  • HTML阅读次数: 1593
  • 引用次数: 0
历史
  • 在线发布日期: 2020-07-17
文章二维码