基于模糊神经网络的有源电力滤波器全局滑模控制
CSTR:
作者:
作者单位:

(1. 河海大学物联网工程学院,南京210098;2. 河海大学江苏省输配电装备技术重点实验室,南京210098)

作者简介:

通讯作者:

E-mail: houshixi@hhu.edu.cn.

中图分类号:

TP13

基金项目:

江苏省自然科学基金项目(BK20170303,BK20171198);常州市科技创新计划项目(CJ20190056);中央高校基本科研业务费专项基金项目(B200202215,B200201052,2017B03014,2017B20014).


Fuzzy neural network based global sliding mode control for active power filter
Author:
Affiliation:

(1. College of IoT Engineering,Hohai University,Nanjing210098,China;2. Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University,Nanjing210098,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对有源电力滤波器电流跟踪控制问题,提出一种基于模糊神经网路的全局滑模控制方法.首先,为了消除到达阶段和抑制抖振,设计准全局滑模控制电流控制器;然后,在考虑参数摄动和传感器故障的情况下,利用元认知模糊神经网络设计基于模糊神经网络的全局滑模控制器,克服全局滑模控制依赖先验知识的缺点.不同于其他固定结构方法,元认知模糊神经网络可以实现结构和参数的在线更新,并利用李雅普诺夫稳定性理论证明所提出的控制策略满足控制目标以及稳定性要求.仿真和实验结果表明,所提出的控制方法在稳态和瞬态运行时都具有良好的性能.

    Abstract:

    This study mainly focuses on the development of a self-organizing global sliding mode control for active power filters. First, a quasi global sliding mode control method is designed for inner current control loop to eliminate the reaching mode and chattering phenomenon. Then, the control law is constructed based on the meta-cognitive fuzzy neural network (MCFNN) rather than the actual systems to overcome the drawbacks of global sliding mode control. Different from the predefined structure approaches, only necessary data can be extracted to adjust the structure and parameters of the networks in the MCFNN. Subsequently, the Lyapunov stability analysis is presented to satisfy the control objectives and system stability requirements at the same time. Finally, simulation and experimental results demonstrate that the proposed control methods offer superior properties in both steady state and transient operation.

    参考文献
    相似文献
    引证文献
引用本文

侯世玺,储云迪,陈晨.基于模糊神经网络的有源电力滤波器全局滑模控制[J].控制与决策,2020,35(10):2329-2335

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-28
  • 出版日期:
文章二维码