一种基于改进KH与KHM聚类的混合数据聚类算法
CSTR:
作者:
作者单位:

(西安理工大学理学院,西安710054)

作者简介:

通讯作者:

E-mail: wqp566@sina.com.

中图分类号:

TP301.6

基金项目:

国家自然科学基金项目(61772416).


A hybrid data clustering algorithm based on improved krill herd algorithm and KHM clustering
Author:
Affiliation:

(Faculty of Sciences,Xián University of Technology,Xián710054,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决K-means聚类对初始聚类中心敏感和易陷入局部最优的问题,提出一种基于改进磷虾群算法与K-harmonic means的混合数据聚类算法.提出一种具有莱维飞行和交叉算子的磷虾群算法以改进磷虾群算法易陷入局部极值和搜索效率低的不足,即在每次标准磷虾群位置更新后加入新的位置更新方法进一步搜索以提高种群的搜索能力,同时交替使用莱维飞行与交叉算子对当前群体位置进行贪婪搜索以增强算法的全局搜索能力.20个标准测试函数的实验结果表明,改进算法不易陷入局部最优解,可在较少的迭代次数下有效地搜索到全局最优解的同时保证算法的稳定性.将改进的磷虾群算法与K调和均值聚类融合,即在每次迭代后用最优个体或经过K调和均值迭代一次后的新个体替换最差个体.5个UCI真实数据集的测试结果表明:融合后的聚类算法能够克服K-means对初始聚类中心敏感的不足且具有较强的全局收敛性.

    Abstract:

    K-means clustering is sensitive to initial clustering centers and prone to fall into local optimum. In order to solve the problem, a hybrid data clustering algorithm based on an improved krill herd algorithm and K-harmonic means clustering is proposed. Firstly, an improved krill herd algorithm with Lévy flight and crossover operator is proposed to improve stagnating local optimum and low search efficiency of the krill herd algorithm. That is, after each standard krill herd location updating, a new location updating method is added to further search to improve the search ability of the population, at the same time, Lévy flight and crossover operators are used alternately to carry out greedy search for the current population position to enhance the global search ability of the algorithm. The experimental results of 20 benchmark test functions show that the improved algorithm is not easy to fall into the local optimum, which can find the global optimal solution via less times of iteration and ensure the stability of the algorithm. Then, the improved krill herd algorithm and the K-harmonic means clustering algorithm are fused to solve the data clustering problem, that is, the worst individual is replaced by the best individual or the new individual by the K-harmonic means processing the worst individual after each iteration. The test results of five real data sets on UCI show that the fused-clustering algorithm overcomes the defect that K-means is sensitive to the initial clustering center and has stronger global convergence.

    参考文献
    相似文献
    引证文献
引用本文

王秋萍,丁成,王晓峰.一种基于改进KH与KHM聚类的混合数据聚类算法[J].控制与决策,2020,35(10):2449-2458

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-28
  • 出版日期:
文章二维码