社会网络环境下基于共识的风险性大群体应急决策非合作行为管理研究
CSTR:
作者:
作者单位:

(中南大学商学院,长沙410083)

作者简介:

通讯作者:

E-mail: xuxh@csu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(71671189, 71971217);国家自然科学基金重点项目(71790615);中南大学研究生自主探索创新项目(2018zzts300).


Management of non-cooperative behavior in consensus-based large group emergency decision-making in social network environment
Author:
Affiliation:

(School of Business,Central South University,Changsha 410083,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大群体应急决策中可能存在的非合作行为,考虑决策专家的社会网络关系,提出一种基于共识的管理大群体应急决策中非合作行为的方法.首先,引入社会网络中基于模块度的Louvain聚类方法对大群体决策专家进行聚类,降低大群体应急决策复杂性;其次,定义两种非合作行为,并建立非合作行为的识别和检测模型;再次,定义信任风险系数、偏好风险系数以及综合风险系数,通过风险系数对不同程度的非合作行为聚集进行偏好调节,从而得到共识水平较高的决策方案;最后,利用“4.25西藏地震的案例”验证所提出方法的可行性和有效性.

    Abstract:

    In view of the possible non-cooperative behavior in large group emergency decision-making, considering the social network relationship of decision-making experts, a consensus-based method for managing non-cooperative behavior in large group emergency decision-making is proposed. Firstly, the Louvain clustering method based on modularity in social network is introduced to cluster decision experts to reduce the complexity of large group emergency decision-making. Secondly, two kinds of non-cooperative behaviors are defined, the identification and detection model of non-cooperative behaviors is established. Then, the concepts of trust risk coefficient, preference risk coefficient and comprehensive risk coefficient are defined. These risk coefficients are used to manage the aggregation of non-cooperative behaviors in different degrees, so that a decision-making scheme with high consensus level can be obtained. Finally, the feasibility and effectiveness of the method proposed in this paper are verified by the case of the 4.25 Tibet earthquake.

    参考文献
    相似文献
    引证文献
引用本文

徐选华,张前辉.社会网络环境下基于共识的风险性大群体应急决策非合作行为管理研究[J].控制与决策,2020,35(10):2497-2506

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-28
  • 出版日期:
文章二维码