基于树形结构无界存档的多目标粒子群算法
CSTR:
作者:
作者单位:

(华北电力大学可再生能源学院,北京102206)

作者简介:

通讯作者:

E-mail: cmji@ncepu.edu.cn.

中图分类号:

TP301.6

基金项目:

国家自然科学基金项目(51679088,51279062);“十三五”国家重点研发计划课题(2016YFC0402208).


Multi-objective particle swarm optimization algorithm based on tree-structured unbounded archive
Author:
Affiliation:

(College of Renewable Energy,North China Electric Power University,Beijing 102206,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多目标优化算法大多采用基于线性链表结构的有界Pareto存档策略,其存在迭代过程中Pareto前沿震荡衰退等弊端以及相关参数难以预先确定等技术难题.为此,构造一种适用于大规模存档集合的树形结构,并利用其取代线性结构以保证存档维护与管理的高效性,进而提出基于树形结构的无界存档策略.在此基础上,将基于正交设计的种群初始化、基于树形结构的存档更新以及基于树形结构的最优个体选择引入多目标粒子群优化,提出基于树形结构无界存档的多目标粒子群算法.最后,通过测试函数上的仿真实验验证了所提出策略与算法的科学性和有效性.

    Abstract:

    Most of the current multi-objective optimization algorithms adopt the bounded Pareto archive strategy based on the linear list structure, which has the drawbacks of Pareto fronts' oscillation, shrinking and other technical difficulties such as pre-determining relevant parameters. Therefore, this paper constructs a tree structure suitable for the storage and update of large-scale archive, replacing the linear structure to ensure high efficiency of archive maintenance and management. And a tree-structured unbounded archive strategy is proposed. We introduce population initialization based on orthogonal design, archive updating and optimal individual selection based on the tree structure into multi-objective particle swarm optimization, and propose a multi-objective particle swarm optimization algorithm based on tree-structured unbounded archive. Finally, simulation experiments on test functions verify the feasibility and effectiveness of the improved strategies and algorithm.

    参考文献
    相似文献
    引证文献
引用本文

纪昌明,马皓宇,李宁宁,等.基于树形结构无界存档的多目标粒子群算法[J].控制与决策,2020,35(11):2675-2686

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-10-15
  • 出版日期:
文章二维码