基于稀疏度阶数优化的杂波密度估计算法
CSTR:
作者:
作者单位:

(杭州电子科技大学自动化学院,杭州310018)

作者简介:

通讯作者:

E-mail: gyf@hdu.edu.cn.

中图分类号:

TN953

基金项目:

浙江省自然科学基金重点项目(LZ20F010002);国家自然科学基金项目(61871166).


A clutter density estimation algorithm by optimized sparsity order
Author:
Affiliation:

(Automation School,Hangzhou Dianzi University,Hangzhou310018,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对杂波分布不均匀且密度未知的多目标跟踪问题,提出一种基于稀疏度阶数优化的杂波密度估计算法.首先,剔除在跟踪门内的潜在目标测量,获取杂波测量集;其次,从杂波测量集中构造“稀疏度阶数-超立方体容积”的样本,并利用支持向量回归机对样本拟合;再次,通过梯度法求得拟合曲线的极值点,实现稀疏度阶数在线优化;最后,将优化后的杂波稀疏度估计器嵌入高斯混合概率假设密度滤波器中,实现复杂杂波环境下目标状态与杂波密度联合估计.仿真结果验证了所提出算法的有效性.

    Abstract:

    In order to address the problem of multi-target tracking by nonuniform clutter spatial distribution and unknown density, a clutter density estimator based on sparsity order optimization is proposed. Firstly, the clutter set is obtained by eliminating the potential target-originated measurements that fall within the validation gate. Then, the samples of “sparsity order-hypercube volume” are constructed from the clutter set and the corresponding fitting function is established by the support vector regression machine. Furthmore, the sparsity order is optimized online by finding the mininum using the gradient method. Finally, the clutter sparsity estimator is combined by the Gaussian mixture probability hypothesis density to estimate the clutter density and target state in complicated backgroud simultaneously. Simulation results show the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

郭云飞,钱恒泽.基于稀疏度阶数优化的杂波密度估计算法[J].控制与决策,2020,35(12):2923-2930

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-12-20
文章二维码