阴影条件下基于迁移强化学习的光伏系统最大功率跟踪
CSTR:
作者:
作者单位:

(1. 昆明理工大学电力工程学院,昆明650500;2. 汕头大学工学院,广东汕头515063;3. 华南理工大学电力学院,广州510640)

作者简介:

通讯作者:

E-mail: xszhang1990@sina.cn.

中图分类号:

TM7

基金项目:

国家自然科学基金项目(61963020);云南省应用基础研究计划项目-青年项目(2018FD036).


Transfer reinforcement learning based maximum power point tracker of PV systems under partial shading condition
Author:
Affiliation:

(1. Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming650500,China;2. School of Engineering,Shantou University,Shantou515063,China;3. College of Electric Power,South China University of Technology,Guangzhou510640,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在光伏系统中,光伏阵列往往会受到阴影条件(partial shading condition,PSC)的影响,造成光伏系统输出功率偏低以及功率-电压($P-V$)特性曲线出现多峰值的现象,从而导致常规最大功率跟踪(maximum power point tracking,MPPT)算法易陷入局部最优的问题.对此,设计一种基于迁移强化学习(transfer reinforcement learning,TRL)的MPPT算法.该算法将连续变量的动作空间分解为若干个小范围的子搜索空间,从而有效提高TRL的学习效率.同时,引入知识迁移,即将旧任务的最优知识矩阵应用到新任务中,进而大幅提高TRL的收敛速度.通过对3种算例的研究,即恒温变光照强度、变温变光照强度和香港实地测试,其仿真结果表明,与传统增量电导法(incremental conductance,INC)、遗传算法(genetic algorithm,GA)、粒子群优化(particle swarm optimization, PSO)算法、人工蜂群(artificial bee colony,ABC)算法、布谷鸟算法(cuckoo search algorithm,CSA)、教-学优化(teaching-learning based optimization,TLBO)算法以及Q学习算法相比,TRL能在PSC下实现最快速的全局最大功率跟踪,同时具有最小的功率波动.最后,基于dSpace的硬件在环实验验证了TRL的硬件可行性.

    Abstract:

    In photovoltaic(PV) systems, PV arrays are often affected by shadows which results in a reduction of generated power. The power-voltage ($P-V$) characteristics of PV array will contain multiple peaks under partial shading condition (PSC), while conventional maximum power tracking (MPPT) techniques are easy to fall into a local optimum. Therefore, this paper designs a novel MPPT algorithm based on transfer reinforcement learning (TRL). The algorithm decomposes the original large-scale search space into several small-scale sub-search spaces, which can effectively improve the global search ability of TRL. Meanwhile, the knowledge transfer is adopted to transfer the optimal knowledge matrix of the old task to the new task, such that the convergence rate of TRL could be improved significantly. Three cases are carried out, e.g., constant temperature and varying solar irradiation, varying temperature and varying solar irradiation, as well as HongKong field test. Simulation results demonstrate that TRL can achieve the fastest MPPT under PSC and lowest power fluctuations in comparison to incremental conductance (INC), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), cuckoo search algorithm (CSA), teaching-learning based optimization (TLBO), and Q-learning. Finally, dSpace based hardware-in-loop (HIL) test verifies the implementation feasibility of TRL.

    参考文献
    相似文献
    引证文献
引用本文

杨博,THIDAR Swe,钟林恩,等.阴影条件下基于迁移强化学习的光伏系统最大功率跟踪[J].控制与决策,2020,35(12):2939-2949

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-12-20
文章二维码