基于动态网格k邻域搜索的激光点云精简算法
CSTR:
作者:
作者单位:

(1. 上海电力大学自动化工程学院,上海200090;2. 科廷大学计算机学院,澳大利亚珀斯6102)

作者简介:

通讯作者:

E-mail: chenhui@shiep.edu.cn.

中图分类号:

TP391.41;TH741.1

基金项目:

国家自然科学基金项目(51705304);上海市自然科学基金项目(16ZR1413400, 20ZR1421300).


Laser point cloud simplification algorithm based on dynamic grid k-nearest neighbors searching
Author:
Affiliation:

(1. College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China;2. Department of Computing,Curtin University,Perth,WA,6102,Australia)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由非接触式扫描方法获得的点云数据存在大量的冗余点,为便于模型重构, 提出一种新的基于动态网格k邻域搜索的点云精简方法.首先,对点云进行k邻域搜索,在k邻域搜索过程中采用动态网格的方法快速寻找k邻域点;然后,根据数据点的k邻域计算点的曲率、点与邻域点法向夹角的平均值、点与邻域点的平均距离,并利用这3个参数定义特征判别参数和特征阈值,比较大小,对特征点进行提取;最后,利用包围盒法对非特征点进行二次精简,将精简后的点云与特征点拼接,实现精简目的.实验结果表明,所提出方法与其他k邻域搜索方法相比,提高了计算效率,并且将特征提取与二次精简方法相结合,既可保留模型的几何特征,又能避免空洞区域的产生,在精度和速度上都取得了较好的效果.

    Abstract:

    In order to realize 3D reconstruction from huge laser scanning point cloud, this paper proposes an improved algorithm for the simplification of the laser point cloud, based on dynamic grid k-nearest neighbors searching. Firstly, the dynamic neighborhood method is used to quickly find the k-neighbor point in the search process. Then, the data point curvature, the average vector angle between the point and its k-nearest neighborhood points, and the average distance from the point to its neighborhood points are calculated for each k-nearest neighborhood. According to the three parameters, the discriminant parameter and characteristic threshold are defined to extract the feature points. Finally, using the bounding box method to simplify the non-feature points, and to splice the reduced non-feature points. The experimental results show that the proposed algorithm improves the accuracy and computational efficiency, compared with other k-nearest neighbors search methods. Furthermore, this method can not only preserve the geometric features of the model, but also avoid the generation of large-scale blank areas, combining with the feature extraction and the secondary reduction.

    参考文献
    相似文献
    引证文献
引用本文

陈辉,黄晓铭,刘万泉.基于动态网格k邻域搜索的激光点云精简算法[J].控制与决策,2020,35(12):2986-2992

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-12-20
文章二维码