一类非线性大系统分散自适应预设性能有限时间跟踪控制
CSTR:
作者:
作者单位:

(辽宁科技大学电子与信息工程学院,辽宁鞍山114051)

作者简介:

通讯作者:

E-mail: lixiaohua6412@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61403177);辽宁省科技厅自然科学基金项目(20180550319);辽宁科技大学研究生教育改革和科技创新项目(LKDYC201812).


Decentralized adaptive prescribed performance finite-time tracking control for a class of large-scale nonlinear systems
Author:
Affiliation:

(School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan114051,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究一类非线性互联大系统的分散自适应预设性能有限时间跟踪控制问题.结合神经网络自适应技术、实际有限时间控制理论和预设性能控制方法,提出一种新的预设性能控制设计方法,以解决传统预设性能方法难以实现分散控制的问题.所设计的控制器能够保证大系统中各个子系统的跟踪误差被有限时间性能函数约束,在任意给定的停息时间内收敛到平衡点的一个给定的邻域内,且该闭环大系统的所有信号是实际有限时间稳定的.特别地,该停息时间与系统初始状态无关.两个仿真例子验证了所提出控制方法的有效性和优越性.

    Abstract:

    The decentralized adaptive prescribed performance finite-time tracking control problem is studied for a class of nonlinear interconnected large-scale systems. A new prescribed performance control design method is proposed combining the neural network adaptive technology, the practical finite-time control theory and the prescribed performance control method. The problem of that the traditional prescribed performance method is hard to realize decentralized control is solved. The designed controllers can guarantee that the tracking errors of all the subsystems in the large-scale system are constrained by a finite-time performance function, and the tracking errors can converge to a predetermined neighbourhood of the equilibrium within an arbitrarily given settling time. And all of the signals in the closed-loop large-scale system are practically finite-time stable. Especially, the settling time is irrelevant to the initial system states. Two simulation examples are given to illustrate the effectiveness and superiority of the proposed control method.

    参考文献
    相似文献
    引证文献
引用本文

李小华,胡利耀.一类非线性大系统分散自适应预设性能有限时间跟踪控制[J].控制与决策,2020,35(12):3045-3052

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-12-20
文章二维码