基于观测器的无人车H_infinity预瞄控制器设计
作者:
作者单位:

北京科技大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(62173029), 科技创新2030-“新一代人工智能重大项目”(2020AAA0108703), 中央高校基本科研业务费专项资金项目(FRF-BD-19-002A).


Design of Observer-Based H_infinity Preview Controller for Autonomous Vehicle
Author:
Affiliation:

University of Science and Technology Beijing

Fund Project:

Funds of National Science of China (Grant Nos. 62173029), the Science and Technology Innovation 2030-“New Generation Artificial Intelligence” major project (2020AAA0108703),and the Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-19-002A).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为抑制道路曲率干扰并提高无人车路径跟踪精度,本文提出一种基于观测器的无人车H无穷预瞄控制器设计方法。首先,将无人车非线性路径跟踪模型转换为线性变参数(Linear Parameter Varying System, LPV) 系 统。其次,建立关于路径曲率的预瞄模型,并将无人车路径跟踪模型和预瞄模型结合起来构建增广系统。考虑传感器测量噪声对无人车路径跟踪精度的影响,设计基于观测器的H无穷状态反馈控制器,并将控制器设计问题 转化为满足一组线性矩阵不等式的优化问题。最后,Simulink/CarSim联合仿真结果表明,本文提出的基于观测器的无人车H无穷预瞄控制方法可以有效减小测量噪声对系统性能的影响,与已有最优控制方法相比,可以取得 更好的路径跟踪精度。

    Abstract:

    In order to reject the effects of disturbances on path tracking accuracy of AGVs(Autonomous Guided Vehicles), an observer-based H_infinity preview controller is proposed in this paper. Firstly, the path tracking error model of AGV is converted into a linear variable parameter (LPV) model. Secondly, a preview model of the path curvature is established, and an augmented system is constructed by combining the path tracking model and the preview model. Considering the influence of sensor measurement noises on the path tracking accuracy, an observer-based H_infinity state-feedback controller is designed, the design conditions of which are converted into solving a set of linear matrix inequalities (LMIs). Finally, simulation results through utilizing Simulink/CarSim show that, the H_infinity preview controller proposed in this paper receives better path tracking results compared with existing methods, where measurement noises are attenuated effectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-26
  • 最后修改日期:2021-12-09
  • 录用日期:2021-12-30
  • 在线发布日期: 2022-03-01
  • 出版日期: