基于流形结构的多源自适应迁移学习算法及应用研究
作者:
作者单位:

太原理工大学

作者简介:

通讯作者:

中图分类号:

TP29

基金项目:

山西省重点研发计划项目(201903D121057);山西省自然科学基金重点项目(201801D111002);山西省研究生教育创新计划项目(2021Y229).


Research on Multi Domain Adaptation-Manifold Regularization and Application
Author:
Affiliation:

Taiyuan University of Technology

Fund Project:

the Key Research and Development (R&D) Projects of Shanxi Province of China (201903D121057);the Key Project of Natural Science Foundation of Shanxi Province of China(201801D111002);the Graduate Education Innovation Project of Shanxi Province (2021Y229).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    迁移学习是将源域的知识迁移解决目标域问题的方法,能有效解决数据分布不一致问题.针对多源域迁移时传统方法缺乏对多源域的可迁移性的合理分析和迁移效果的有效处理问题,本文提出了一种基于流形结构的多源自适应迁移学习的方法,旨在提高单源域迁移效果的同时实现多源域的有效迁移.首先,对多源域进行可迁移性分析,选择可迁移的源域;然后,适配边缘分布和条件分布并引入均衡因子得到均衡分布适配,同时利用流形正则化约束数据结构,使单源域的信息使用最大化;最后,通过加权因子对不同源域分类器进行自适应加权,充分利用多源域的信息求解目标域问题.将该算法应用于滚磨光整加工中滚抛磨块的优选,通过建立滚抛磨块的相似度匹配方法,构建基于流形结构的多源自适应迁移学习的滚抛磨块优选模型.大量对比实验表明该方法表现更佳,准确率最高至73.44%,可以为滚磨光整中滚抛磨块的选择提供更有效的决策指导.

    Abstract:

    Transfer learning is a method of transferring knowledge from source domain to solve the problem of the target domain, which can effectively solve the problem of inconsistent data distribution. Aiming at the problem that traditional methods lack a reasonable analysis of the transferability of multi domain and the effective treatment of transfer effects in multi domain transfer, the Multi Domain Adaptation-Manifold Regularization transfer learning algorithm is proposed to improve the effect of single source domain transfer while realizing effective transfer of multi domain. Firstly, the transferability of multi domain is analysed to select the source domains that can be transferred; then, the marginal distribution and the conditional distribution is adapted and the balance factor is introduced to obtain the balanced distribution adaptation, as well as the manifold regularization is used to constrain the data structure to maximize the use of information in the single source domain; finally, different domain classifiers are adaptively weighted by weighting factors, and the information of multi domain is fully utilized to solve the target domain problem. This algorithm is applied to the optimization of the abrasive media in the mass finishing. By establishing the similarity matching method of the abrasive media, the Multi Domain Adaptation-Manifold Regularization of the abrasive media optimization model is constructed. A large number of comparative experiments show that this method performs better, with an accuracy rate of up to 73.44%, which can provide more effective decision-making guidance for the optimization of the abrasive media in the mass finishing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-05
  • 最后修改日期:2021-11-25
  • 录用日期:2021-11-26
  • 在线发布日期: 2022-01-02
  • 出版日期: