基于动态变采样区域RRT的无人车路径规划
DOI:
作者:
作者单位:

哈尔滨理工大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

1.国家自然科学基金青年项目,51909049,62103120 2.黑龙江省自然科学基金,LH2020E094,LH2021F033 3.黑龙江省普通高校基本科研业务费专项资金资助,LGYC2018JC011 4.黑龙江省普通本科高等学校青年创新人才培养计划项目,UNPYSCT-2020190


Path planning of unmanned vehicle based on dynamic variable sampling area RRT
Author:
Affiliation:

Harbin University of Science and Technology

Fund Project:

National Science Foundation for Young Scientists of China (51909049, 62103120), the National Science Foundation for Heilongjiang Province (LH2020E094, LH2021F033), the Fundamental Research Fundation for Universities of Heilongjiang Province (LGYC2018JC011), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2020190)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人车传统RRT路径规划算法节点搜索盲目性?随机性以及路径曲折不连续等问题, 提出一种动态变采样区域RRT路径规划算法(Dynamic variable sampling area RRT, DVSA-RRT). 首先, 初始化地图信息, 根据动态变采样区域公式划分采样空间, 进而选择采样区域; 在此基础上, 利用基于安全距离的碰撞检测?概率目标偏置策略和多级步长扩展完成初始路径规划; 最后, 利用考虑最大转角约束的逆向寻优和3次B样条曲线对初始路径进行拟合优化. 仿真结果表明, 该算法相较于原始RRT算法在不同地图环境下的搜索时间和采样次数均降低50%以上, 大大降低了节点搜索的盲目性和随机性, 相较于其它算法搜索时间也减少30%以上, 且优化后的路径平滑满足车辆运动动力学约束.

    Abstract:

    Aiming at the blindness, randomness of node search, and the discontinuous path planning in the traditional RRT path planning algorithm for unmanned vehicles, a dynamic variable sampling area RRT path planning algorithm is proposed. Firstly, the map information is initialized. The sampling space is divided according to the dynamic variable sampling area formula. Then the sampling area is selected. The initial path planning is completed by using collision detection based on safe distance, probabilistic target offset strategy and multi-level step expansion. Finally, the inverse optimization considering the maximum rotation constraint and cubic B-spline curve is used to fit and optimize the initial path. Simulation results show that compared with the original RRT algorithm, the search time and sampling times of the proposed algorithm in different map environments are reduced by more than 50%, which greatly reduces the blindness and randomness of node search. Compared with other algorithms, the search time of the proposed algorithm is also reduced by more than 30%. The planned path is smooth and meets the constraints of vehicle dynamics.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-05
  • 最后修改日期:2022-02-06
  • 录用日期:2022-02-25
  • 在线发布日期:
  • 出版日期: